全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Behavior of Yb3+ and Er3+ during Heat Treatment in Oxyfluoride Glass Ceramics

DOI: 10.1155/2014/171045

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effects of alumina content and heat treatment on upconversion properties of codoped (ErF3-YbF3) oxyfluoride glass ceramics were investigated. Results showed that alumina content had an effect on phase separation and viscosity of the glass. Due to the high viscosity of low alumina content glass, the phase separated areas were smaller in these specimens. Increasing the heat treatment temperature led to the incorporation of Er3+ ions into CaF2 crystals and also increased the Yb3+ concentration in them. This increase improved the energy transfer and back transfer process between Er3+ and Yb3+ ions and as result upconversion intensity was increased. 1. Introduction At present, there is great interest in luminescent materials for efficient frequency conversion from infrared to visible radiation, mainly because a visible source pumped by a near infrared laser is useful for high-capacity data storage optical devices [1]. This process can be obtained by upconversion mechanisms, where several infrared photons can be absorbed by the material doped with rare earth ions (RE) in order to populate more energetic levels. Therefore, both the fluorescence lifetime and the stimulated emission cross-section of the RE excited level should be maximized, whereas the nonradiative decay mechanisms should be minimized [2]. Oxyfluoride glass ceramics are ambivalent materials. Despite the fact that they are mainly oxide glasses, they can exhibit optical properties of fluoride single crystals when they are doped with rare earth ions. They are often called nanocomposite materials. Their weird character is obtained by a classical melting and quenching preparation in air followed by an adapted thermal treatment during which fluoride phases are crystallized. The size, size distribution, and volume concentration of fluoride crystallites are crucial for photonic applications. For example, to be a promising optical functional material, the size of the crystallites should be smaller than at least half of the wavelength of the light used while the size distribution should be narrow and the crystallites should possess a homogeneous spatial distribution. In this way, according to the scattering theory developed by Rayleigh [3], complete transparency of a light transmitting material can be attained [4]. A refractive index difference between the amorphous and crystalline phases of less than 0.1 is also required. However, according to Beall and Pinckney [5], based on Hopper’s model, crystal sizes of 30?nm and differences in refractive index of 0.3 may be acceptable, provided that the crystal

References

[1]  M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martína, “Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480 nm,” Solar Energy Materials and Solar Cells, vol. 116, pp. 171–175, 2013.
[2]  A. Tressaud, Synthesis, Characterization & Properties of Nanostructured Solids, vol. 1, John Wiley & Sons, Paris, France, 2010.
[3]  L. Rayleigh, “The incidence of light upon a transparent sphere of dimensions comparable with the wave-length,” Proceedings of the Royal Society of London Series A, vol. 84, no. 567, pp. 25–46, 1910.
[4]  S. Bhattacharyya, T. H?che, N. Hemono, M. J. Pascual, and P. A. van Aken, “Nano-crystallization in LaF3-Na2O-Al2O3-SiO2 glass,” Journal of Crystal Growth, vol. 311, no. 18, pp. 4350–4355, 2009.
[5]  G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” Journal of the American Ceramic Society, vol. 82, no. 1, pp. 5–16, 1999.
[6]  M. C. Gon?alves, L. F. Santos, and R. M. Almeida, “Rare-earth-doped transparent glass ceramics,” Comptes Rendus Chimie, vol. 5, no. 12, pp. 845–854, 2002.
[7]  D. Chen, Y. Wang, Y. Yu et al., “Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals,” Materials Chemistry and Physics, vol. 95, no. 2-3, pp. 264–269, 2006.
[8]  F. Bao, Y. Wang, and Z. Hu, “Influence of Er3+ doping on microstructure of oxyfluoride glass-ceramics,” Materials Research Bulletin, vol. 40, no. 10, pp. 1645–1653, 2005.
[9]  M. H. Imanieh, et al., “Crystallization of nano calcium fluoride in CaF2-Al2O3-SiO2 system,” Solid State Sciences, vol. 17, pp. 76–82, 2013.
[10]  I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Transfer and back transfer processes in Yb3+-Er3+ codoped fluoroindate glasses,” Journal of Applied Physics, vol. 86, no. 2, pp. 935–939, 1999.
[11]  D. Chen, Y. Wang, E. Ma, Y. Yu, and F. Liu, “Partition, luminescence and energy transfer of Er3+/Yb3+ ions in oxyfluoride glass ceramic containing CaF2 nano-crystals,” Optical Materials, vol. 29, no. 12, pp. 1693–1699, 2007.
[12]  M. H. Imanieh, et al., “Effect of alumina content and heat treatment on microstructure and upconversion emission of Er3+ ions in oxyfluoride glass-ceramics,” Journal of Rare Earths, vol. 30, no. 12, pp. 1228–1234, 2012.
[13]  Y. Kishi, S. Tanabe, S. Tochino, and G. Pezzotti, “Fabrication and efficient infrared-to-visible upconversion in transparent glass ceramics of Er-Yb Co-doped CaF2 nano-crystals,” Journal of the American Ceramic Society, vol. 88, no. 12, pp. 3423–3426, 2005.
[14]  C. Perez-Rodriguez, M. H. Imanieh, L. L. Martín, S. Rios, I. R. Martín, and B. E. Yekta, “Study of the focusing effect of silica microspheres on the upconversion of Er3+-Yb3+ codoped glass ceramics,” Journal of Alloys and Compounds, vol. 576, pp. 363–368, 2013.
[15]  D. Chen, Y. Wang, Y. Yu, and E. Ma, “Improvement of Er3+ emissions in oxyfluoride glass ceramic nano-composite by thermal treatment,” Journal of Solid State Chemistry, vol. 179, no. 5, pp. 1445–1452, 2006.
[16]  D. Chen, Y. Wang, Y. Yu, and E. Ma, “Influence of Yb3+ content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals,” Materials Chemistry and Physics, vol. 101, no. 2-3, pp. 464–469, 2007.
[17]  G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Nucleation efficiency of erbium and ytterbium fluorides in transparent oxyfluoride glass-ceramics,” Journal of Materials Research, vol. 20, no. 2, pp. 472–481, 2005.
[18]  M. H. Imanieh, et al., “Improved cooperative emission in ytterbium-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” Journal of the American Ceramic Society, vol. 95, no. 12, pp. 3827–3833, 2012.
[19]  R. Hill, D. Wood, and M. Thomas, “Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine,” Journal of Materials Science, vol. 34, no. 8, pp. 1767–1774, 1999.
[20]  L. Lin, G. Ren, M. Chen, Y. Liu, and Q. Yang, “Study of fluorine losses and spectroscopic properties of Er3+ doped oxyfluoride silicate glasses and glass ceramics,” Optical Materials, vol. 31, no. 10, pp. 1439–1442, 2009.
[21]  N. Hémono, G. Pierre, F. Mu?oz, A. de Pablos-Martín, M. J. Pascual, and A. Durán, “Processing of transparent glass-ceramics by nanocrystallisation of LaF3,” Journal of the European Ceramic Society, vol. 29, no. 14, pp. 2915–2920, 2009.
[22]  C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses,” Chemistry of Materials, vol. 17, no. 23, pp. 5843–5847, 2005.
[23]  T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Physical Review B, vol. 1, no. 7, pp. 2961–2969, 1970.
[24]  W. Yan, Y. Chen, and M. Yin, “Quenching mechanism of Er3+ emissions in Er3+- and Er3+/Yb3+-doped SrAl12O19 nanophosphors,” Journal of Rare Earths, vol. 29, no. 3, pp. 202–206, 2011.
[25]  J. del-Castillo, A. C. Yanes, J. Méndez-Ramos, V. K. Tikhomirov, and V. D. Rodríguez, “Structure and up-conversion luminescence in sol-gel derived Er3+-Yb3+ co-doped SiO2:PbF2 nano-glass-ceramics,” Optical Materials, vol. 32, no. 1, pp. 104–107, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133