We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs). We calculate the real rate of absorbed photons (in the dye spectral range) by introducing a factor in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density , open circuit voltage , fill factor FF, and power conversion efficiency . We analyze the influence of the nature of semiconductor (TiO2) and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters. 1. Introduction The technology and materials used for the third generation solar cells give the opportunity to obtain cells with high efficiency [1–5]. The solar cells based on dye-sensitized nanostructure with mesoporous metal oxides (DSSCs) have attracted considerable attention since the work of O’Regan and Gr?tzel [6], their manufacturing being environment-friendly and energy-efficient [1, 7]. Up to now, certified efficiencies over 10% under standard conditions or even higher (12,4%) at the laboratory scale were reported [7–10]. Based on the low cost of materials and the simplicity of fabrication process, DSSC can have lower fabrication costs than conventional silicon-based solar cells. Taking into account this advantage, the improvement of DSSC parameters for making them widely used appears as a strong necessity. Further optimization of the DSSC parameters requires a better correlation between interrelated processes of transport and accumulation of electrons in the mesoporous oxide phase and recombination of electrons with electron acceptors [11]. In order to understand the different processes governing the DSSC’s mode of operation and to enhance the DSSCs performance, modeling of processes and numerical simulation of the cells were carried out
References
[1]
H. S. Jung and J. K. Lee, “Dye sensitized solar cells for economically viable photovoltaic systems,” The Journal of Physical Chemistry Letters, vol. 4, no. 10, pp. 1682–1693, 2013.
[2]
G. Conibeer, M. Green, R. Corkish et al., “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films, vol. 511, pp. 654–662, 2006.
[3]
R. R. King, D. C. Law, K. M. Edmondson et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Applied Physics Letters, vol. 90, no. 18, Article ID 183516, 2007.
[4]
J. G. J. Adams, B. C. Browne, I. M. Ballard et al., “Recent results for single-junction and tandem quantum well solar cells,” Progress in Photovoltaics, vol. 19, no. 7, pp. 865–877, 2011.
[5]
V. Iancu, M. R. Mitroi, A.-M. Lepadatu, I. Stavarache, and M. L. Ciurea, “Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots,” Journal of Nanoparticle Research, vol. 13, no. 4, pp. 1605–1612, 2011.
[6]
B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[7]
A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011.
[8]
M. Gr?tzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003.
[9]
L. Han, A. Islam, H. Chen et al., “High-efficiency dye-sensitized solar cell with a novel co-adsorbent,” Energy and Environmental Science, vol. 5, no. 3, pp. 6057–6060, 2012.
[10]
X. Yang, M. Yanagida, and L. Y. Han, “Reliable evaluation of dye-sensitized solar cells,” Energy and Environmental Science, vol. 6, no. 1, pp. 54–66, 2013.
[11]
T. Oda, S. Tanaka, and S. Hayase, “Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model,” Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2696–2709, 2006.
[12]
J. Ferber, R. Stangl, and J. Luther, “Electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, vol. 53, no. 1-2, pp. 29–54, 1998.
[13]
L. Peter, “Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells,” Journal of Electroanalytical Chemistry, vol. 599, no. 2, pp. 233–240, 2007.
[14]
M. Berginc, M. Filipic, U. O. Kra?ovec et al., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, vol. 10, no. 3, pp. S425–S430, 2010.
[15]
J. Bisquert and I. Mora-Seró, “Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length,” Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 450–456, 2010.
[16]
J. Halme, P. Vahermaa, K. Miettunen, and P. Lund, “Device physics of dye solar cells,” Advanced Materials, vol. 22, no. 35, pp. E210–E234, 2010.
[17]
M. Onodera, K. Ogiya, A. Suzuki et al., “Modeling of dye-sensitized solar cells based on TiO2 electrode structure model,” Japanese Journal of Applied Physics, vol. 49, no. 4, Article ID 04DP10, 2010.
[18]
L. Andrade, J. Sousa, H. Aguilar Ribeiro, and A. Mendes, “Phenomenological modeling of dye-sensitized solar cells under transient conditions,” Solar Energy, vol. 85, no. 5, pp. 781–793, 2011.
[19]
S. Wenger, M. Schmid, G. Rothenberger, A. Gentsch, M. Gr?tzel, and J. O. Schumacher, “Coupled optical and electronic modeling of dye-sensitized solar cells for steady-state parameter extraction,” Journal of Physical Chemistry C, vol. 115, no. 20, pp. 10218–10229, 2011.
[20]
D. Gentilini, A. Gagliardi, and A. D. Carlo, “Dye solar cells efficiency maps: a parametric study,” Optical and Quantum Electronics, vol. 44, no. 3–5, pp. 155–160, 2012.
[21]
K. Nithyanandam and R. Pitchumani, “Analysis and design of dye-sensitized solar cell,” Solar Energy, vol. 86, no. 1, pp. 351–368, 2012.
[22]
P. H. Joshi, D. P. Korfiatis, S. F. Potamianou, and K. A. Th. Thoma, “Optimum oxide thickness for dye-sensitized solar cells-effect of porosity and porous size: a numerical approach,” Ionics, vol. 19, no. 3, pp. 571–576, 2013.
[23]
M. R. Mitroi and L. Fara, “Organic solar cells modeling and simulation,” in Advanced Solar Cell Materials: Technology, Modeling and Simulation, L. Fara and M. Yamaguchi, Eds., pp. 120–137, IGI Global, 2013.
[24]
D. M. B. P. Ariyasinghe, H. M. N. Bandara, R. M. G. Rajapakse, K. Murakami, and M. Shimomura, “Improved performance of dye-sensitized solar cells using a diethyldithiocarbamate-modified TiO2 surface,” Journal of Nanomaterials, vol. 2013, Article ID 258581, 6 pages, 2013.
[25]
J. S. Agnaldo, J. C. Cressoni, and G. M. Viswanathan, “Universal aspects of photocurrent-voltage characteristics in dye-sensitized nanocrystalline TiO2 photoelectrochemical cells,” Physical Review B, vol. 79, no. 3, Article ID 035308, 2009.
[26]
M. Gr?tzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–334, 2001.
[27]
“Solving Boundary Value Problems in MathCad,” 2013, http://www.chem.mtu.edu/~tbco/cm3450/bvp.pdf.
[28]
F. Gao, Y. Wang, D. Shi et al., “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10720–10728, 2008.
[29]
“ASTM G173-03 Reference Spectra Derived from SMARTS v. 2. 9. 2,” 2012, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.
[30]
B. E. Hardin, E. T. Hoke, P. B. Armstrong et al., “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nature Photonics, vol. 3, no. 7, pp. 406–411, 2009.
[31]
C.-H. Lee, K.-Y. Liu, S.-H. Chang et al., “Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells,” Journal of Colloid and Interface Science, vol. 363, no. 2, pp. 635–639, 2011.
[32]
T. Dittrich, A. Ofir, S. Tirosh, L. Grinis, and A. Zaban, “Influence of the porosity on diffusion and lifetime in porous TiO2 layers,” Applied Physics Letters, vol. 88, no. 18, Article ID 182110, 2006.