Electroluminescent devices (ELD) based on junctions of indium doped zinc oxide (ZnO:In) and porous silicon layers (PSL) are presented in this work. PSL with different thicknesses and photoluminescent emission, around 680?nm, were obtained by anodic etching. PSL were coated with a ZnO:In film which was obtained by ultrasonic spray pyrolysis technique. Once obtained, this structure was optically and electrically characterized. When the devices were electrically polarized they showed stable electroluminescence (EL) which was presented as dots scattered over the surface. These dots can be seen with the naked eye. The observed EL goes from the 410 to 1100?nm, which is formed by different emission bands. The EL emission in the visible region was around 400 to 750?nm, and the emission corresponding to the infrared part covers the 750 to 1150?nm. The electrical characterization was carried out by current-voltage curves (I-V) which show a rectifying behavior of the devices. Observed electroluminescent dots are associated with the electron-hole injection into quantized states in PS as well as the emission from the ZnO:In film. 1. Introduction Crystalline silicon (c-Si) has been a vital material for the development of the microelectronics industry; however, it is an indirect band semiconductor so that it limits its application to the optoelectronics industry. Nevertheless, the discovery of visible luminescence at room temperature of the porous silicon (PS) has reopened the possibility to obtain electroluminescent silicon based devices [1–3]. The discovery of photoluminescence [1] in PS and the understanding of the growth of nanostructures [2] opened the field to a large amount of work on this material. For practical applications, the electroluminescence (EL) is the crucial point. The development of electroluminescent devices (ELD) in PS technology faces some specific problems. The material has a large internal surface; therefore, it shows a tendency to undergo a chemical change when it is exposed to air. Furthermore, nanoporous silicon shows a very low electrical conductivity which causes problems for the EL efficiency. However, ELD with wet contacts [4, 5] have proved to be efficient. This shows that, in principle, PS is a good material to get EL. Most of the ELD present a simple integrated structure of a porous layer and a contact layer on top. For contact, thin metals such as gold, indium tin oxide (ITO), silicon carbide, and conductive polymers are used. An advanced structure has p-n junction within the porous region. For this work, we propose to use a ZnO:In
References
[1]
L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters, vol. 57, no. 10, pp. 1046–1048, 1990.
[2]
V. Lehmann and U. G?sele, “Porous silicon formation: a quantum wire effect,” Applied Physics Letters, vol. 58, no. 8, pp. 856–858, 1991.
[3]
C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon,” Journal of Physics C, vol. 17, no. 35, pp. 6535–6552, 1984.
[4]
J. C. Vial, A. Bsiesy, F. Gaspard et al., “Mechanisms of visible-light emission from electro-oxidized porous silicon,” Physical Review B, vol. 45, no. 24, pp. 14171–14176, 1992.
[5]
A. Bsiesy, F. Muller, M. Ligeon et al., “Optical properties of low dimensional silicon structures,” in Proceedings of the NATO Advanced Research Workshop, Meylan, France, 1993.
[6]
T. Okamura, Y. Seki, S. Nagakari, and H. Okushi, “Junction properties and gap states of ZnO thin film prepared by sol-gel process,” Japanese Journal of Applied Physics, vol. 31, pp. 3218–3220, 1992.
[7]
L. Casta?eda, A. García-Valenzuela, E. P. Zironi, J. Ca?etas-Ortega, M. Terrones, and A. Maldonado, “Formation of indium-doped zinc oxide thin films using chemical spray techniques: the importance of acetic acid content in the aerosol solution and the substrate temperature for enhancing electrical transport,” Thin Solid Films, vol. 503, no. 1-2, pp. 212–218, 2006.
[8]
A. Guillen-Santiago, M. D. L. L. Olvera, and A. Maldonado, “Películas delgadas de ZnO:F depositadas por rocío químico: efecto de la temperatura de substrato sobre las propiedades físicas,” Superficies y Vacio, vol. 13, pp. 77–79, 2001.
[9]
K. L. Chopra, S. Major, and D. K. Pandya, “Transparent conductors—a status review,” Thin Solid Films, vol. 102, no. 1, pp. 1–46, 1983.
[10]
M. A. Martínez, J. Herrero, and M. T. Gutiérrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Materials and Solar Cells, vol. 45, no. 1, pp. 75–86, 1997.
[11]
P. S. Patil, “Versatility of chemical spray pyrolysis technique,” Materials Chemistry and Physics, vol. 59, no. 3, pp. 185–198, 1999.
[12]
J. F. Guillemoles, D. Lincot, P. Cowache, and J. Vedel, “Solvent effect on ZnO thin films prepared by spray pyrolysis,” in Proceedings of the 10th European Photovoltaic Solar Energy Conference, A. Luque, G. Sal, W. Pals, G. dos Santos, and P. Helm, Eds., pp. 609–612, Lisbon, Portugal, 1991.
[13]
J. J. Yon, K. Barla, R. Herino, and G. Bomchil, “The kinetics and mechanism of oxide layer formation from porous silicon formed on p-Si substrates,” Journal of Applied Physics, vol. 62, no. 3, pp. 1042–1048, 1987.
[14]
Z. Fekin, F. Z. Otmani, N. Ghellai, and N. E. Chabanne-Sari, “Characterization of the porous silicon layers,” The Moroccan Journal of Condensed Matter, vol. 7, no. 1, pp. 35–37, 2006.
[15]
P. Kumar, “Effect of silicon crystal size on photoluminescence appearance in porous silicon,” ISRN Nanotechnology, vol. 2011, Article ID 163168, 6 pages, 2011.
[16]
R. Herino, “Luminescence of porous silicon after electrochemical oxidation,” in Porous Silicon Science and Technology, pp. 53–66, 1995.
[17]
B. E. Warren, X-Ray Diffraction, Dover, New York, NY, USA, 1990.
[18]
T. P. Pearsall, J. C. Adams, J. N. Kidder Jr. et al., “Bright visible photoluminescence in thin silicon films,” Thin Solid Films, vol. 222, no. 1-2, pp. 200–204, 1992.
[19]
W. Lang, P. Steiner, and F. Kozlowski, “Porous silicon electroluminescent devices,” Journal of Luminescence, vol. 57, pp. 341–349, 1993.
[20]
G. Hu, S. Q. Li, H. Gong et al., “White light from an indium zinc oxide/porous silicon light-emitting diode,” The Journal of Physical Chemistry C, vol. 113, no. 2, pp. 751–754, 2009.
[21]
Y. Zhao, D. Yang, L. Lin, and D. Que, “Blue light emission of porous silicon subjected to RTP treatments,” Chinese Science Bulletin, vol. 51, no. 22, pp. 2696–2699, 2006.
[22]
L. Casta?eda, O. G. Morales-Saavedra, J. C. Cheang-Wong et al., “Influence of indium concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO:In thin films deposited from zinc pentanedionate and indium sulfate,” Journal of Physics Condensed Matter, vol. 18, no. 22, pp. 5105–5120, 2006.
[23]
S. S. Iyer and Y.-H. Xie, “Light emission from silicon,” Science, vol. 40, pp. 40–46, 1993.
[24]
N. Koshida, H. Koyama, Y. Suda et al., “Optical characterization of porous silicon by synchrotron radiation reflectance spectra analyses,” Applied Physics Letters, vol. 63, pp. 2774–2776, 1993.
[25]
T. Oguro, H. Koyama, T. Ozaki, and N. Koshida, “Mechanism of the visible electroluminescence from metal/porous silicon/n-Si devices,” Journal of Applied Physics, vol. 81, no. 3, pp. 1407–1412, 1997.
[26]
S. Schuppler, S. L. Friedman, M. A. Marcus et al., “Dimensions of luminescent oxidized and porous silicon structures,” Physical Review Letters, vol. 72, no. 16, pp. 2648–2651, 1994.