全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

DOI: 10.1155/2014/243041

Full-Text   Cite this paper   Add to My Lib

Abstract:

Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field. 1. Introduction Hybrid solar cells combine both organic and inorganic semiconductors in an active layer such that the organic or polymer semiconductor serves as the electron donor and transports photogenerated holes, whereas the inorganic semiconductor accepts and transports electrons [1–6]. Theoretically, the hybrid photovoltaic devices (HPVs) are expected to achieve a high power conversion efficiency (PCE) because they combine the advantageous characteristics of polymers and nanocrystals (NCs), including the flexibility, light weight, and low fabrication costs of polymer materials [7–9] and the high electron mobility, size-dependent optical properties [10, 11], and physical and chemical stability of inorganic NCs [12]. Unfortunately, the PCE values obtained thus far in hybrid devices have not exceeded 4% under simulated air mass (AM) 1.5 illumination [13]. The main barriers to a higher PCE are thought to be an inefficient exciton dissociation at the donor/acceptor (D/A) interface [14–16], inhibition of recombination [17, 18], and poor charge transport to the electrodes [19–21]. Therefore, the design of compatible surfaces, accounting for the different chemical properties of the organic and inorganic materials, and control over the phase separation of the composites are crucial for achieving rapid and high-yield charge separation at the D/A interface and for promoting charge transport and collection at the electrodes. Three distinct strategies have been explored toward improving the interface design in the nanocomposite materials to enable hybrid solar cells to achieve high PCE. The first approach, ligand exchange, uses a mix of polymers and inorganic NCs prepared via colloidal synthesis approaches. The

References

[1]  B. R. Saunders, “Hybrid polymer/nanoparticle solar cells: preparation, principles and challenges,” Journal of Colloid and Interface Science, vol. 369, no. 1, pp. 1–15, 2012.
[2]  B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science, vol. 138, no. 1, pp. 1–23, 2008.
[3]  T. Xu and Q. Qiao, “Conjugated polymer-inorganic semiconductor hybrid solar cells,” Energy and Environmental Science, vol. 4, no. 8, pp. 2700–2720, 2011.
[4]  L. Zhao and Z. Lin, “Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells,” Advanced Materials, vol. 24, pp. 4353–4368, 2012.
[5]  A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, “Hybrid solar cells: basic principles and the role of ligands,” Journal of Materials Chemistry, vol. 22, no. 6, pp. 2351–2368, 2012.
[6]  R. Zhou and J. Xue, “Hybrid polymer-nanocrystal materials for photovoltaic applications,” Chemphyschem, vol. 13, pp. 2471–2480, 2012.
[7]  S. A. Gevorgyan, A. J. Medford, E. Bundgaard et al., “An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules,” Solar Energy Materials and Solar Cells, vol. 95, no. 5, pp. 1398–1416, 2011.
[8]  F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstr?m, and M. S. Pedersen, “Manufacture, integration and demonstration of polymer solar cells in a lamp for the “lighting Africa” initiative,” Energy and Environmental Science, vol. 3, no. 5, pp. 512–525, 2010.
[9]  F. Tong, K. Kim, D. Martinez, et al., “Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array,” Semiconductor Science and Technology, vol. 27, Article ID 105005, 2012.
[10]  C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E??S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993.
[11]  T. Ling, M. Wu, and X. Du, “Template synthesis and photovoltaic application of CdS nanotube arrays,” Semiconductor Science and Technology, vol. 27, Article ID 055017, 2012.
[12]  J. Bouclé, P. Ravirajan, and J. Nelson, “Hybrid polymer-metal oxide thin films for photovoltaic applications,” Journal of Materials Chemistry, vol. 17, no. 30, pp. 3141–3153, 2007.
[13]  S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Letters, vol. 10, no. 1, pp. 239–242, 2010.
[14]  H. Hoppe and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells,” Journal of Materials Chemistry, vol. 16, no. 1, pp. 45–61, 2006.
[15]  M. Pientka, V. Dyakonov, D. Meissner et al., “Photoinduced charge transfer in composites of conjugated polymers and semiconductor nanocrystals,” Nanotechnology, vol. 15, no. 1, pp. 163–170, 2004.
[16]  E. Martínez-Ferrero, J. Albero, and E. Palomares, “Materials, nanomorphology, and interfacial charge transfer reactions in quantum dot/polymer solar cell devices,” Journal of Physical Chemistry Letters, vol. 1, no. 20, pp. 3039–3045, 2010.
[17]  M. D. Heinemann, K. Von Maydell, F. Zutz et al., “Photo-induced charge transfer and relaxation of persistent charge carriers in polymer/nanocrystal composites for applications in hybrid solar cells,” Advanced Functional Materials, vol. 19, no. 23, pp. 3788–3795, 2009.
[18]  K. M. Noone, S. Subramaniyan, Q. Zhang, G. Cao, S. A. Jenekhe, and D. S. Ginger, “Photoinduced charge transfer and polaron dynamics in polymer and hybrid photovoltaic thin films: organic vs inorganic acceptors,” Journal of Physical Chemistry C, vol. 115, no. 49, pp. 24403–24410, 2011.
[19]  D. S. Ginger and N. C. Greenham, “Charge injection and transport in films of CdSe nanocrystals,” Journal of Applied Physics, vol. 87, no. 3, pp. 1361–1368, 2000.
[20]  K. F. Jeltsch, M. Sch?del, J.-B. Bonekamp et al., “Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods,” Advanced Functional Materials, vol. 22, no. 2, pp. 397–404, 2012.
[21]  K. Kumari, S. Chand, V. D. Vankar, and V. Kumar, “Enhancement in hole current density on polarization in poly(3- hexylthiophene):cadmium selenide quantum dot nanocomposite thin films,” Applied Physics Letters, vol. 94, no. 21, Article ID 213503, 2009.
[22]  P. Reiss, E. Couderc, J. De Girolamo, and A. Pron, “Conjugated polymers/semiconductor nanocrystals hybrid materials—preparation, electrical transport properties and applications,” Nanoscale, vol. 3, no. 2, pp. 446–489, 2011.
[23]  S. R. Ferreira, R. J. Davis, Y.-J. Lee, P. Lu, and J. W. P. Hsu, “Effect of device architecture on hybrid zinc oxide nanoparticle:poly(3- hexylthiophene) blend solar cell performance and stability,” Organic Electronics, vol. 12, no. 7, pp. 1258–1263, 2011.
[24]  O. Stenzel, L. J. A. Koster, R. Thiedmann, S. D. Oosterhout, R. A. J. Janssen, and V. Schmidt, “A new approach to model-based simulation of disordered polymer blend solar cells,” Advanced Functional Materials, vol. 22, no. 6, pp. 1236–1244, 2012.
[25]  H. E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, and M. Chhowalla, “Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films,” Journal of Materials Chemistry, vol. 18, no. 48, pp. 5909–5912, 2008.
[26]  Y.-C. Huang, W.-C. Yen, Y.-C. Liao et al., “Band gap aligned conducting interface modifier enhances the performance of thermal stable polymer- TiO2 nanorod solar cell,” Applied Physics Letters, vol. 96, no. 12, Article ID 123501, 2010.
[27]  S. Lu, S.-S. Sun, X. Jiang, J. Mao, T. Li, and K. Wan, “In situ 3-hexylthiophene polymerization onto surface of TiO2 based hybrid solar cells,” Journal of Materials Science, vol. 21, no. 7, pp. 682–686, 2010.
[28]  M.-C. Wu, H.-C. Liao, H.-H. Lo et al., “Nanostructured polymer blends (P3HT/PMMA): inorganic titania hybrid photovoltaic devices,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 961–965, 2009.
[29]  M. Bredol, K. Matras, A. Szatkowski, J. Sanetra, and A. Prodi-Schwab, “P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage,” Solar Energy Materials and Solar Cells, vol. 93, no. 5, pp. 662–666, 2009.
[30]  E. Maier, A. Fischereder, W. Haas et al., “Metal sulfide-polymer nanocomposite thin films prepared by a direct formation route for photovoltaic applications,” Thin Solid Films, vol. 519, no. 13, pp. 4201–4206, 2011.
[31]  D. Yun, W. Feng, H. Wu, and K. Yoshino, “Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1208–1213, 2009.
[32]  Y. Kang, N.-G. Park, and D. Kim, “Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer,” Applied Physics Letters, vol. 86, no. 11, Article ID 113101, pp. 1–3, 2005.
[33]  D. Verma, A. Ranga Rao, and V. Dutta, “Surfactant-free CdTe nanoparticles mixed MEH-PPV hybrid solar cell deposited by spin coating technique,” Solar Energy Materials and Solar Cells, vol. 93, no. 9, pp. 1482–1487, 2009.
[34]  H. C. Chen, C. W. Lai, I. C. Wu, et al., “Enhanced performance and air stability of 3.2% hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solar cell efficiency,” Advanced Materials, vol. 23, pp. 5451–5455, 2011.
[35]  H.-C. Liao, N. Chantarat, S.-Y. Chen, and C.-H. Peng, “Annealing effect on photovoltaic performance of hybrid P3HT/In-situ grown CdS nanocrystal solar cells,” Journal of the Electrochemical Society, vol. 158, no. 7, pp. E67–E72, 2011.
[36]  L. X. Reynolds, T. Lutz, S. Dowland, A. MacLachlan, S. King, and S. A. Haque, “Charge photogeneration in hybrid solar cells: a comparison between quantum dots and in situ grown CdS,” Nanoscale, vol. 4, pp. 1561–1564, 2012.
[37]  V. Resta, A. M. Laera, E. Piscopiello, M. Schioppa, and L. Tapfer, “Highly efficient precursors for direct synthesis of tailored CdS nanocrystals in organic polymers,” Journal of Physical Chemistry C, vol. 114, no. 41, pp. 17311–17317, 2010.
[38]  H. Bi and R. R. LaPierre, “A GaAs nanowire/P3HT hybrid photovoltaic device,” Nanotechnology, vol. 20, no. 46, Article ID 465205, 2009.
[39]  S. Ren, N. Zhao, S. C. Crawford, M. Tambe, V. Bulovi?, and S. Grade?ak, “Heterojunction photovoltaics using GaAs nanowires and conjugated polymers,” Nano Letters, vol. 11, no. 2, pp. 408–413, 2011.
[40]  C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Letters, vol. 8, no. 3, pp. 775–779, 2008.
[41]  D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, and M. Gerhold, “Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells,” Applied Physics Letters, vol. 88, no. 18, Article ID 183111, 2006.
[42]  J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Advanced Materials, vol. 23, no. 34, pp. 3984–3988, 2011.
[43]  J. Seo, S. J. Kim, W. J. Kim et al., “Enhancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange,” Nanotechnology, vol. 20, no. 9, Article ID 095202, 2009.
[44]  Z. Wang, S. Qu, X. Zeng et al., “Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells,” Polymer, vol. 49, no. 21, pp. 4647–4651, 2008.
[45]  L. He, C. Jiang, H. Wang, D. Lai, and R. Rusli, “Si nanowires organic semiconductor hybrid heterojunction solar cells toward 10% efficiency,” ACS Applied Materials and Interfaces, vol. 4, no. 3, pp. 1704–1708, 2012.
[46]  C. -Y. Liu, Z. C. Holman, and U. R. Kortshagen, “Hybrid solar cells from P3HT and silicon nanocrystals,” Nano Letters, vol. 9, no. 1, pp. 449–452, 2009.
[47]  N. Radychev, D. Scheunemann, M. Kruszynska, et al., “Investigation of the morphology and electrical characteristics of hybrid blends based on poly(3-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes,” Organic Electronics, vol. 13, pp. 3154–3164, 2012.
[48]  E. Maier, T. Rath, W. Haas et al., “CuInS2Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by an in situ formation route, performance and stability issues,” Solar Energy Materials and Solar Cells, vol. 95, no. 5, pp. 1354–1361, 2011.
[49]  E. Arici, H. Hoppe, F. Sch?ffler, D. Meissner, M. A. Malik, and N. S. Sariciftci, “Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems,” Applied Physics A, vol. 79, no. 1, pp. 59–64, 2004.
[50]  J. Liu, W. Wang, H. Yu, Z. Wu, J. Peng, and Y. Cao, “Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1403–1409, 2008.
[51]  H.-C. Liao, S.-Y. Chen, and D.-M. Liu, “In-situ growing CdS single-crystal nanorods via P3HT polymer as a soft template for enhancing photovoltaic performance,” Macromolecules, vol. 42, no. 17, pp. 6558–6563, 2009.
[52]  S. D. Oosterhout, M. M. Wienk, S. S. Van Bavel et al., “The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells,” Nature Materials, vol. 8, no. 10, pp. 818–824, 2009.
[53]  Y. Peng, G. Song, X. Hu, et al., “In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells,” Nanoscale Research Letters, vol. 8, article 106, 2013.
[54]  J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fréchet, “Employing end-functional polythiophene to control the morphology of nanocrystal—polymer composites in hybrid solar cells,” Journal of the American Chemical Society, vol. 126, no. 21, pp. 6550–6551, 2004.
[55]  A. L. Briseno, T. W. Holcombe, A. I. Boukai et al., “Oligo- and polythiophene/ZnO hybrid nanowire solar cells,” Nano Letters, vol. 10, no. 1, pp. 334–340, 2010.
[56]  S. Ren, L.-Y. Chang, S.-K. Lim et al., “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Letters, vol. 11, no. 9, pp. 3998–4002, 2011.
[57]  Y.-Y. Lin, T.-H. Chu, S.-S. Li et al., “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” Journal of the American Chemical Society, vol. 131, no. 10, pp. 3644–3649, 2009.
[58]  P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18737–18753, 2008.
[59]  A. Haugeneder, M. Neges, C. Kallinger et al., “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Physical Review B, vol. 59, no. 23, pp. 15346–15351, 1999.
[60]  J. E. Kroeze, T. J. Savenije, M. J. W. Vermeulen, and J. M. Warman, “Contactless determination of the photoconductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers,” Journal of Physical Chemistry B, vol. 107, no. 31, pp. 7696–7705, 2003.
[61]  T. J. Savenije, J. M. Warman, and A. Goossens, “Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer,” Chemical Physics Letters, vol. 287, no. 1-2, pp. 148–153, 1998.
[62]  T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: a review,” Energy and Environmental Science, vol. 2, no. 4, pp. 347–363, 2009.
[63]  J. D. Olson, G. P. Gray, and S. A. Carter, “Optimizing hybrid photovoltaics through annealing and ligand choice,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 519–523, 2009.
[64]  Y. Zhou, F. S. Riehle, Y. Yuan et al., “Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene),” Applied Physics Letters, vol. 96, no. 1, Article ID 013304, 2010.
[65]  J. Seo, W. J. Kim, S. J. Kim, K.-S. Lee, A. N. Cartwright, and P. N. Prasad, “Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand,” Applied Physics Letters, vol. 94, no. 13, Article ID 133302, 2009.
[66]  Q. Zhang, T. P. Russell, and T. Emrick, “Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene),” Chemistry of Materials, vol. 19, no. 15, pp. 3712–3716, 2007.
[67]  H. Skaff, K. Sill, and T. Emrick, “Quantum dots tailored with poly(para-phenylene vinylene),” Journal of the American Chemical Society, vol. 126, no. 36, pp. 11322–11325, 2004.
[68]  S. D. Oosterhout, L. J. A. Koster, S. S. Van Bavel et al., “Controlling the morphology and efficiency of hybrid ZnO: polythiophene solar cells via side chain functionalization,” Advanced Energy Materials, vol. 1, no. 1, pp. 90–96, 2011.
[69]  H. C. Leventis, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy, and S. A. Haque, “Nanostructured hybrid polymer? Inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks,” Nano Letters, vol. 10, no. 4, pp. 1253–1258, 2010.
[70]  A. Stavrinadis, R. Beal, J. M. Smith, H. E. Assender, and A. A. R. Watt, “Direct formation of PbS nanorods in a conjugated polymer,” Advanced Materials, vol. 20, no. 16, pp. 3105–3109, 2008.
[71]  C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” Journal of Applied Physics, vol. 101, no. 11, Article ID 114503, 2007.
[72]  C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E?=?S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993.
[73]  J. Park, J. Joo, G. K. Soon, Y. Jang, and T. Hyeon, “Synthesis of monodisperse spherical nanocrystals,” Angewandte Chemie, vol. 46, no. 25, pp. 4630–4660, 2007.
[74]  C. de Mello Donegá, P. Liljeroth, and D. Vanmaekelbergh, “Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals,” Small, vol. 1, no. 12, pp. 1152–1162, 2005.
[75]  X. Peng, “Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals,” Advanced Materials, vol. 15, no. 5, pp. 459–463, 2003.
[76]  H. A. Macpherson and C. R. Stoldt, “Iron pyrite nanocubes: size and shape considerations for photovoltaic application,” ACS Nano, vol. 6, pp. 8940–8949, 2012.
[77]  L.-S. Li and A. P. Alivisatos, “Semiconductor nanorod liquid crystals and their assembly on a substrate,” Advanced Materials, vol. 15, no. 5, pp. 408–411, 2003.
[78]  K. M. Ryan, A. Mastroianni, K. A. Stancil, H. Liu, and A. P. Alivisatos, “Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices,” Nano Letters, vol. 6, no. 7, pp. 1479–1482, 2006.
[79]  W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, and A. P. Alivisatos, “Controlling the morphology of nanocrystal-polymer composites for solar cells,” Advanced Functional Materials, vol. 13, no. 1, pp. 73–79, 2003.
[80]  S. Günes, N. Marjanovic, J. M. Nedeljkovic, and N. S. Sariciftci, “Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene,” Nanotechnology, vol. 19, no. 42, Article ID 424009, 2008.
[81]  L. Han, D. Qin, X. Jiang et al., “Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells,” Nanotechnology, vol. 17, no. 18, pp. 4736–4742, 2006.
[82]  M.-C. Wu, C.-H. Chang, H.-H. Lo et al., “Nanoscale morphology and performance of molecular-weight-dependent poly(3-hexylthiophene)/TiO2 nanorod hybrid solar cells,” Journal of Materials Chemistry, vol. 18, no. 34, pp. 4097–4102, 2008.
[83]  B. Sun and N. C. Greenham, “Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers,” Physical Chemistry Chemical Physics, vol. 8, no. 30, pp. 3557–3560, 2006.
[84]  J. E. Brandenburg, X. Jin, M. Kruszynska et al., “Influence of particle size in hybrid solar cells composed of CdSe nanocrystals and poly(3-hexylthiophene),” Journal of Applied Physics, vol. 110, no. 6, Article ID 064509, 2011.
[85]  Y. Zhou, Y. Li, H. Zhong et al., “Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals,” Nanotechnology, vol. 17, no. 16, article no. 008, pp. 4041–4047, 2006.
[86]  H. Lee, S. Kim, W.-S. Chung, K. Kim, and D. Kim, “Hybrid solar cells based on tetrapod nanocrystals: the effects of compositions and type II heterojunction on hybrid solar cell performance,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 446–452, 2011.
[87]  I. Gur, N. A. Fromer, C.-P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Letters, vol. 7, no. 2, pp. 409–414, 2007.
[88]  J. Yang, A. Tang, R. Zhou, and J. Xue, “Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene):CdSe nanocrystal solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 476–482, 2011.
[89]  S.-J. Ko, H. Choi, W. Lee, et al., “Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles,” Energy & Environmental Science, vol. 6, p. 1949, 2013.
[90]  R. Rajesh, T. Ahuja, and D. Kumar, “Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications,” Sensors and Actuators B, vol. 136, no. 1, pp. 275–286, 2009.
[91]  N. C. Greenham, X. Peng, and A. P. Alivisatos, “Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity,” Physical Review B, vol. 54, no. 24, pp. 17628–17637, 1996.
[92]  I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak, “Surface treatment of cdse nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine,” Journal of Physical Chemistry C, vol. 114, no. 29, pp. 12784–12791, 2010.
[93]  N. Radychev, I. Lokteva, F. Witt, J. Kolny-Olesiak, H. Borchert, and J. Parisi, “Physical origin of the impact of different nanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells,” Journal of Physical Chemistry C, vol. 115, no. 29, pp. 14111–14122, 2011.
[94]  J. F. Lin, G. Y. Tu, C. C. Ho, et al., “Molecular structure effect of pyridine-based surface ligand on the performance of P3HT:TiO2 hybrid solar cell,” ACS Appl Mater Interfaces, vol. 5, pp. 1009–1016, 2013.
[95]  Y. Zhao, G. Yuan, P. Roche, and M. Leclerc, “A calorimetric study of the phase transitions in poly(3-hexylthiophene),” Polymer, vol. 36, no. 11, pp. 2211–2214, 1995.
[96]  D. S. Ginger and N. C. Greenham, “Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals,” Physical Review B, vol. 59, no. 16, pp. 10622–10629, 1999.
[97]  D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder, and J. M. J. Fréchet, “Electroactive surfactant designed to mediate electron transfer between CdSe nanocrystals and organic semiconductors,” Advanced Materials, vol. 15, no. 1, pp. 58–61, 2003.
[98]  C.-H. Chang, T.-K. Huang, Y.-T. Lin et al., “Improved charge separation and transport efficiency in poly(3- hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells,” Journal of Materials Chemistry, vol. 18, no. 19, pp. 2201–2207, 2008.
[99]  J. Bouclé, S. Chyla, M. S. P. Shaffer, J. R. Durrant, D. D. C. Bradley, and J. Nelson, “Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT,” Comptes Rendus Physique, vol. 9, no. 1, pp. 110–118, 2008.
[100]  J. Weickert, F. Auras, T. Bein, and L. Schmidt-Mende, “Characterization of interfacial modifiers for hybrid solar cells,” Journal of Physical Chemistry C, vol. 115, no. 30, pp. 15081–15088, 2011.
[101]  W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, “Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer,” Advanced Materials, vol. 16, no. 12, pp. 1009–1013, 2004.
[102]  W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, “Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles,” Advanced Functional Materials, vol. 16, no. 8, pp. 1112–1116, 2006.
[103]  P. A. C. Quist, W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, T. J. Savenije, and L. D. A. Siebbeles, “Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers,” Journal of Physical Chemistry B, vol. 110, no. 21, pp. 10315–10321, 2006.
[104]  I. Park, Y. Lim, S. Noh et al., “Enhanced photovoltaic performance of ZnO nanoparticle/poly(phenylene vinylene) hybrid photovoltaic cells by semiconducting surfactant,” Organic Electronics, vol. 12, no. 3, pp. 424–428, 2011.
[105]  H.-P. Fang, I.-H. Chiang, C.-W. Chu, C.-C. Yang, and H.-C. Lin, “Applications of novel dithienothiophene- and 2,7-carbazole-based conjugated polymers with surface-modified ZnO nanoparticles for organic photovoltaic cells,” Thin Solid Films, vol. 519, no. 15, pp. 5212–5218, 2011.
[106]  S. Shao, F. Liu, G. Fang, B. Zhang, Z. Xie, and L. Wang, “Enhanced performances of hybrid polymer solar cells with p-methoxybenzoic acid modified zinc oxide nanoparticles as an electron acceptor,” Organic Electronics, vol. 12, no. 4, pp. 641–647, 2011.
[107]  K. Yuan, F. Li, L. Chen, Y. Li, and Y. Chen, “Liquid crystal helps ZnO nanoparticles self-assemble for performance improvement of hybrid solar cells,” Journal of Physical Chemistry C, vol. 116, no. 10, pp. 6332–6339, 2012.
[108]  D. I. Son, B. W. Kwon, J. D. Yang, D. H. Park, B. Angadi, and W. K. Choi, “High efficiency ultraviolet photovoltaic cells based on ZnO-C60 core-shell QDs with organic-inorganic multilayer structure,” Journal of Materials Chemistry, vol. 22, no. 3, pp. 816–819, 2012.
[109]  C.-T. Chen, F.-C. Hsu, S.-W. Kuan, and Y.-F. Chen, “The effect of C60 on the ZnO-nanorod surface in organicinorganic hybrid photovoltaics,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 740–744, 2011.
[110]  K. Yao, L. Chen, Y. Chen, F. Li, and P. Wang, “Interfacial nanostructuring of ZnO nanoparticles by fullerene surface functionalization for “Annealing-Free” hybrid bulk heterojunction solar cells,” Journal of Physical Chemistry C, vol. 116, no. 5, pp. 3486–3491, 2012.
[111]  B. Park, J.-H. Lee, M. Chang, and E. Reichmanis, “Exciton dissociation and charge transport properties at a modified donor/acceptor interfacepoly(3-hexylthiophene)/Thiol-ZnO bulk heterojunction interfaces,” Journal of Physical Chemistry C, vol. 116, no. 6, pp. 4252–4258, 2012.
[112]  A. J. Said, G. Poize, C. Martini et al., “Hybrid bulk heterojunction solar cells based on P3HT and porphyrin-modified ZnO nanorods,” Journal of Physical Chemistry C, vol. 114, no. 25, pp. 11273–11278, 2010.
[113]  S. Zhang, P. W. Cyr, S. A. McDonald, G. Konstantatos, and E. H. Sargent, “Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier,” Applied Physics Letters, vol. 87, no. 23, Article ID 233101, 3 pages, 2005.
[114]  K. M. Noone, E. Strein, N. C. Anderson, P.-T. Wu, S. A. Jenekhe, and D. S. Ginger, “Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots,” Nano Letters, vol. 10, no. 7, pp. 2635–2639, 2010.
[115]  J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, “Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer,” Advanced Materials, vol. 23, no. 34, pp. 3984–3988, 2011.
[116]  W. Ma, S. L. Swisher, T. Ewers et al., “Photovoltaic performance of ultrasmall PbSe quantum dots,” ACS Nano, vol. 5, no. 10, pp. 8140–8147, 2011.
[117]  A. H. Ip, S. M. Thon, S. Hoogland, et al., “Hybrid passivated colloidal quantum dot solids,” Nat Nano, vol. 7, pp. 577–582, 2012.
[118]  J. Xu, J. Wang, M. Mitchell et al., “Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots,” Journal of the American Chemical Society, vol. 129, no. 42, pp. 12828–12833, 2007.
[119]  P. A. van Hal, M. M. Wienk, J. M. Kroon et al., “Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction,” Advanced Materials, vol. 15, no. 2, pp. 118–121, 2003.
[120]  W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon, and R. A. J. Janssen, “Hybrid solar cells using a zinc oxide precursor and a conjugated polymer,” Advanced Functional Materials, vol. 15, no. 10, pp. 1703–1707, 2005.
[121]  D. J. D. Moet, L. J. A. Koster, B. De Boer, and P. W. M. Blom, “Hybrid polymer solar cells from highly reactive diethylzinc: MDMO-PPV versus P3HT,” Chemistry of Materials, vol. 19, no. 24, pp. 5856–5861, 2007.
[122]  S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Direct synthesis of CdSe nanoparticles in poly(3-hexylthiophene),” Journal of the American Chemical Society, vol. 131, no. 49, pp. 17726–17727, 2009.
[123]  L. H. Slooff, J. M. Kroon, J. Loos, M. M. Koetse, and J. Sweelssen, “Influence of the relative humidity on the performance of polymer/TiO2 photovoltaic cells,” Advanced Functional Materials, vol. 15, no. 4, pp. 689–694, 2005.
[124]  S. D. Oosterhout, M. M. Wienk, M. Al-Hashimi, M. Heeney, and R. A. J. Janssen, “Hybrid polymer solar cells from zinc oxide and poly(3-hexylselenophene),” Journal of Physical Chemistry C, vol. 115, no. 38, pp. 18901–18908, 2011.
[125]  S. Dowland, T. Lutz, A. Ward et al., “Direct growth of metal sulfide nanoparticle networks in solid-state polymer films for hybrid inorganic-organic solar cells,” Advanced Materials, vol. 23, no. 24, pp. 2739–2744, 2011.
[126]  A. Watt, E. Thomsen, P. Meredith, and H. Rubinsztein-Dunlop, “A new approach to the synthesis of conjugated polymer-nanocrystal composites for heterojunction optoelectronics,” Chemical Communications, vol. 10, no. 20, pp. 2334–2335, 2004.
[127]  J. H. Warner and A. A. R. Watt, “Monodisperse PbS nanocrystals synthesized in a conducting polymer,” Materials Letters, vol. 60, no. 19, pp. 2375–2378, 2006.
[128]  A. A. R. Watt, D. Blake, J. H. Warner et al., “Lead sulfide nanocrystal: conducting polymer solar cells,” Journal of Physics D, vol. 38, no. 12, pp. 2006–2012, 2005.
[129]  L. Chen, X. Pan, D. Zheng et al., “Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite,” Nanotechnology, vol. 21, no. 34, Article ID 345201, 2010.
[130]  J. M. Lee, B. H. Kwon, H. I. Park, et al., “Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-Dot/N-doped CNT hybrid nanomaterials,” Advanced Materials, vol. 25, no. 14, pp. 2011–2017, 2013.
[131]  T.-H. Kim, S.-J. Yang, and C.-R. Park, “Carbon nanomaterials in organic photovoltaic cells,” Carbon Letters, vol. 12, pp. 194–206, 2011.
[132]  Q. Zheng, G. Fang, F. Cheng, et al., “Hybrid graphene–ZnO nanocomposites as electron acceptor in polymer-based bulk-heterojunction organic photovoltaics,” Journal of Physics D, vol. 45, Article ID 455103, 2012.
[133]  C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, and C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angewandte Chemie, vol. 49, no. 17, pp. 3014–3017, 2010.
[134]  H. Derbal-Habak, C. Bergeret, J. Cousseau, and J. M. Nunzi, “Improving the current density Jsc of organic solar cells P3HT:PCBM by structuring the photoactive layer with functionalized SWCNTs,” Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. S53–S56, 2011.
[135]  D. Wang, J. K. Baral, H. Zhao et al., “Controlled fabrication of pbs quantum-dot/carbon-nanotube nanoarchitecture and its significant contribution to near-infrared photon-to-current conversion,” Advanced Functional Materials, vol. 21, no. 21, pp. 4010–4018, 2011.
[136]  Y. Jia, A. Cao, X. Bai et al., “Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping,” Nano Letters, vol. 11, no. 5, pp. 1901–1905, 2011.
[137]  F. Li, Y. Shi, K. Yuan, and Y. Chen, “Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance,” New Journal of Chemistry, vol. 37, article 195, 2013.
[138]  F. Li, W. Chen, and Y. Chen, “Mesogen induced self-assembly for hybrid bulk heterojunction solar cells based on a liquid crystal D-A copolymer and ZnO nanocrystals,” Journal of Materials Chemistry, vol. 22, no. 13, pp. 6259–6266, 2012.
[139]  K. Yuan, F. Li, Y. Chen, X. Wang, and L. Chen, “In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics,” Journal of Materials Chemistry, vol. 21, no. 32, pp. 11886–11894, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133