Oxygen plasma treatment on porous silicon (p-Si) surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas. 1. Introduction The past decade has seen the rapid development of porous silicon (p-Si) in many applications including microelectronics, implantation, drug delivery, and biosensor [1–3] due to its distinctive properties such as large surface-area-to-volume ratio, wide range of pore geometry and morphology, biocompatibility, There has been a particular interest in the use of p-Si for biosensors to detect biomolecular interactions and cell adhesion [4], leading to significant potentials towards applications in the fields of tissue engineering and drug delivery [5–8]. However, one of the major challenges with these applications is the precise control of surface wetting properties of p-Si. This is particularly important as both protein and living cells are very sensitive to these wetting properties, and, when not optimized, protein or cells may either lose their bioactivity on the surface or simply resist adhering to the surface [4]. For instance, it was reported that human MG63 osteosarcoma cells tend to attach and grow only on surfaces which present the contact angle of around 64° [9]. Wetting properties of p-Si surface largely rely on surface morphology and chemical bonds [10]. While morphology is usually controlled at fabrication stage [11], surface chemical bond composition can be modified during postprocessing steps which have been the focus of many research activities. As a result, approaches using molecular grafting [12, 13], UV photosensitive molecular coating [14, 15], electrochemical methods [16], and so forth have been reported. However, despite some success, these reported approaches are neither
References
[1]
H. F?ll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon,” Materials Science and Engineering R: Reports, vol. 39, no. 4, pp. 93–141, 2002.
[2]
E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, “Porous silicon in drug delivery devices and materials,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1266–1277, 2008.
[3]
M. Latterich and J. Corbeil, “Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method,” Proteome Science, vol. 6, article 31, 2008.
[4]
S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials, vol. 30, no. 1, pp. 26–34, 2009.
[5]
N. Massad-Ivanir, G. Shtenberg, A. Tzur, M. A. Krepker, and E. Segal, “Engineering nanostructured porous SiO2 surfaces for bacteria detection via “Direct Cell Capture”,” Analytical Chemistry, vol. 83, no. 9, pp. 3282–3289, 2011.
[6]
S. P. Low, K. A. Williams, L. T. Canham, and N. H. Voelcker, “Evaluation of mammalian cell adhesion on surface-modified porous silicon,” Biomaterials, vol. 27, no. 26, pp. 4538–4546, 2006.
[7]
L. M. Bonanno and E. Segal, “Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery,” Nanomedicine, vol. 6, no. 10, pp. 1755–1770, 2011.
[8]
M. M. Orosco, C. Pacholski, G. M. Miskelly, and M. J. Sailor, “Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity,” Advanced Materials, vol. 18, no. 11, pp. 1393–1396, 2006.
[9]
D. P. Dowling, I. S. Miller, M. Ardhaoui, and W. M. Gallagher, “Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene,” Journal of Biomaterials Applications, vol. 26, no. 3, pp. 327–347, 2011.
[10]
J. Dong, Z. Yao, T. Yang, L. Jiang, and C. Shen, “Control of superhydrophilic and superhydrophobic graphene interface,” Scientific Reports, vol. 3, article 1733, 2013.
[11]
A. Ressine, D. Finnskog, G. Marko-Varga, and T. Laurell, “Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis,” Nanobiotechnology, vol. 4, no. 1–4, pp. 18–27, 2008.
[12]
S. Pace, P. Gonzalez, J.-M. Devoisselle, P.-E. Milhiet, D. Brunel, and F. Cunin, “Grafting of monoglyceride molecules for the design of hydrophilic and stable porous silicon surfaces,” New Journal of Chemistry, vol. 34, no. 1, pp. 29–33, 2010.
[13]
L. Fernández, M. Sánchez, F. J. Carmona et al., “Analysis of the grafting process of PVP on a silicon surface by AFM and contact angle,” Langmuir, vol. 27, no. 18, pp. 11636–11649, 2011.
[14]
D. Dattilo, L. Armelao, G. Fois, G. Mistura, and M. Maggini, “Wetting properties of flat and porous silicon surfaces coated with a spiropyran,” Langmuir, vol. 23, no. 26, pp. 12945–12950, 2007.
[15]
D. Dattilo, L. Armelao, M. Maggini, G. Fois, and G. Mistura, “Wetting behavior of porous silicon surfaces functionalized with a fulleropyrrolidine,” Langmuir, vol. 22, no. 21, pp. 8764–8769, 2006.
[16]
Z. Wang and N. Koratkar, “Electrically controlled wetting and dewetting transition on silicon micro-pillar arrays,” Advanced Science Letters, vol. 1, no. 2, pp. 222–225, 2008.
[17]
B. A. Langowski and K. E. Uhrich, “Oxygen plasma-treatment effects on Si transfer,” Langmuir, vol. 21, no. 14, pp. 6366–6372, 2005.
[18]
S.-W. Choi, W.-B. Choi, Y.-H. Lee, B.-K. Ju, M.-Y. Sung, and B.-H. Kim, “The analysis of oxygen plasma pretreatment for improving anodic bonding,” Journal of the Electrochemical Society, vol. 149, no. 1, pp. G8–G11, 2002.
[19]
L. Jiang, Z. Li, L. Yang et al., “Effect of oxygen plasma on surface wettability of porous silicon,” China Surface Engineering, vol. 26, no. 5, pp. 43–48, 2013.
[20]
S. B. Habib, E. Gonzalez, and R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” Journal of Vacuum Science and Technology A, vol. 28, no. 3, pp. 476–485, 2010.
[21]
A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, “Porous silicon biosensor for detection of viruses,” Biosensors and Bioelectronics, vol. 23, no. 5, pp. 741–745, 2007.
[22]
N. Naveas, V. T. Costa, D. Gallach et al., “Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin,” Science and Technology of Advanced Materials, vol. 13, no. 4, Article ID 045009, 2012.
[23]
M. J. Sailor, “Fundamentals of porous silicon preparation,” in Porous Silicon in Practice, pp. 1–42, Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
[24]
Z. W. A, “Relation of the equilibrium contact angle to liquid and solid constitution,” in Contact Angle, Wettability, and Adhesion, pp. 1–51, American Chemical Society, 1964.
[25]
J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, UK, 2nd edition, 1992.
[26]
E. Gonzalez II, M. D. Barankin, P. C. Guschl, and R. F. Hicks, “Remote atmospheric-pressure plasma activation of the surfaces of polyethylene terephthalate and polyethylene naphthalate,” Langmuir, vol. 24, no. 21, pp. 12636–12643, 2008.
[27]
T. Suni, K. Henttinen, I. Suni, and J. M?kinen, “Effects of plasma activation on hydrophilic bonding of Si and SiO2,” Journal of the Electrochemical Society, vol. 149, no. 6, pp. G348–G351, 2002.
[28]
A. Grabbe, T. A. Michalske, and W. L. Smith, “Strained siloxane rings on the surface on silica. Their reaction with organosiloxanes, organosilanes, and water,” Journal of Physical Chemistry, vol. 99, no. 13, pp. 4648–4654, 1995.
[29]
Y. J. Chabal, Fundamental Aspects of Silicon Oxidation, Springer, Berlin, Germany, 2001.
[30]
R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, “Microscopic uniformity in plasma etching,” Journal of Vacuum Science & Technology B, vol. 10, pp. 2133–2147, 1992.
[31]
J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” Journal of Vacuum Science and Technology B, vol. 23, no. 6, pp. 2319–2329, 2005.
[32]
K. Malek and M.-O. Coppens, “Knudsen self- and Fickian diffusion in rough nanoporous media,” Journal of Chemical Physics, vol. 119, no. 5, pp. 2801–2811, 2003.
[33]
B. Hosticka, P. M. Norris, J. S. Brenizer, and C. E. Daitch, “Gas flow through aerogels,” Journal of Non-Crystalline Solids, vol. 225, no. 1–3, pp. 293–297, 1998.
[34]
J. S. Andrade Jr., U. M. S. Costa, M. P. Almeida, H. A. Makse, and H. E. Stanley, “Inertial effects on fluid flow through disordered porous media,” Physical Review Letters, vol. 82, no. 26, pp. 5249–5252, 1999.