The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL) and silicate based bioactive glass-ceramic (R-SBgC). Different concentrations of R-SBgC prepared from rice husk ash (RHA) were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS) method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites. 1. Introduction The use of biomaterials for treating bone defects has been widely accepted despite the availability of natural bone grafts. This is due to the lack of donor site morbidity issues and the avoidance of possible disease transmission regarding biomaterials [1–3]. Among the many biomaterials available, polycaprolactone (PCL), which is a synthetic biodegradable polymer, has shown great promise [4, 5]. In fact, PCL is presently one of the few biomaterials approved by FDA for use as bone graft substitutes [5–7]. PCL can be easily fabricated into a material possessing the desired toughness, which is appropriate for bone replacement. In addition to being biocompatible, PCL has a low degradation rate, which is a desired feature in a biomaterial designed for specific sites of bone with longer healing times [4]. However, this material alone without additives demonstrates low mechanical resistance to compressive loading, hydrophobicity, and low bioactivity [8]. To counter these problems, bioactive ceramics/biodegradable polymer composite materials were introduced. These new materials demonstrated superior properties including improvement in material strength, stiffness, biodegradability, osteoconductivity, and bioactivity [4, 6, 7, 9]. In addition, polymer/bioactive ceramic composite scaffolds have structures that resemble bone, where the inorganic component of these scaffolds mimics the hydroxycarbonate-apatite (HCA) motifs while the polymer component mimics the collagen-rich extracellular matrix. Although both HCA and
References
[1]
L. G. Griffith and G. Naughton, “Tissue engineering—current challenges and expanding opportunities,” Science, vol. 295, no. 5557, pp. 1009–1014, 2002.
[2]
R. A. Bhatt and T. D. Rozental, “Bone graft substitutes,” Hand Clinics, vol. 28, no. 4, pp. 457–468, 2012.
[3]
S. K. Nandi, S. Roy, P. Mukherjee, B. Kundu, D. K. De, and D. Basu, “Orthopaedic applications of bone graft & graft substitutes: a review,” Indian Journal of Medical Research, vol. 132, no. 7, pp. 15–30, 2010.
[4]
E. Tamjid, R. Bagheri, M. Vossoughi, and A. Simchi, “Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites,” Materials Science and Engineering C, vol. 31, no. 7, pp. 1526–1533, 2011.
[5]
M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—polycaprolactone in the 21st century,” Progress in Polymer Science, vol. 35, no. 10, pp. 1217–1256, 2010.
[6]
A. R. Boccaccini and J. J. Blaker, “Bioactive composite materials for tissue engineering scaffolds,” Expert Review of Medical Devices, vol. 2, no. 3, pp. 303–317, 2005.
[7]
A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Z. Hong, and J. F. Mano, “Polymer/bioactive glass nanocomposites for biomedical applications: a review,” Composites Science and Technology, vol. 70, no. 13, pp. 1764–1776, 2010.
[8]
J.-H. Jo, E.-J. Lee, D.-S. Shin et al., “In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials,” Journal of Biomedical Materials Research B, vol. 91, no. 1, pp. 213–220, 2009.
[9]
P. X. Ma, R. Zhang, G. Xiao, and R. Franceschi, “Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite,” Journal of Biomedical Materials Research, vol. 54, pp. 284–293, 2001.
[10]
D. Arcos and M. Vallet-Regí, “Sol-gel silica-based biomaterials and bone tissue regeneration,” Acta Biomaterialia, vol. 6, no. 8, pp. 2874–2888, 2010.
[11]
V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, and R. Jér?me, “Porous poly(α-hydroxyacid)/bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation,” Biomaterials, vol. 25, no. 18, pp. 4185–4194, 2004.
[12]
Z. Hong, R. L. Reis, and J. F. Mano, “Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles,” Acta Biomaterialia, vol. 4, no. 5, pp. 1297–1306, 2008.
[13]
A. M. El-Kady, E. A. Saad, B. M. A. El-Hady, and M. M. Farag, “Synthesis of silicate glass/poly(l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation,” Ceramics International, vol. 36, no. 3, pp. 995–1009, 2010.
[14]
B. Lei, K. H. Shin, D. Y. Noh et al., “Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering,” Materials Science and Engineering C, vol. 33, pp. 1102–1108, 2013.
[15]
B. A. Allo, A. S. Rizkalla, and K. Mequanint, “Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process,” Langmuir, vol. 26, no. 23, pp. 18340–18348, 2010.
[16]
Y. S. Nam and T. G. Park, “Biodegradable polymeric microcellular foams by modified thermally induced phase separation method,” Biomaterials, vol. 20, no. 19, pp. 1783–1790, 1999.
[17]
J. P. Nayak, S. Kumar, and J. Bera, “Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization,” Journal of Non-Crystalline Solids, vol. 356, no. 28–30, pp. 1447–1451, 2010.
[18]
N. Yal?in and V. Sevin?, “Studies on silica obtained from rice husk,” Ceramics International, vol. 27, no. 2, pp. 219–224, 2001.
[19]
Y. Y. Hsu, J. D. Gresser, D. J. Trantolo, C. M. Lyons, P. R. J. Gangadharam, and D. L. Wise, “Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices,” Journal of Biomedical Materials Research, vol. 35, no. 1, pp. 107–116, 1997.
[20]
T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006.
[21]
N. Sultana and T. H. Khan, “In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue enginering,” Journal of Nanomaterials, vol. 1, pp. 1–12, 2012.
[22]
S. I. Roohani-Esfahani, S. Nouri-Khorasani, Z. F. Lu, R. C. Appleyard, and H. Zreiqat, “Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds,” Acta Biomaterialia, vol. 7, no. 3, pp. 1307–1318, 2011.
[23]
K. Zhang, Y. Wang, M. A. Hillmyer, and L. F. Francis, “Processing and properties of porous poly(L-lactide)/bioactive glass composites,” Biomaterials, vol. 25, no. 13, pp. 2489–2500, 2004.
[24]
V. Cannillo, F. Chiellini, P. Fabbri, and A. Sola, “Production of Bioglass 45S5—polycaprolactone composite scaffolds via salt-leaching,” Composite Structures, vol. 92, no. 8, pp. 1823–1832, 2010.
[25]
X. Li, J. Shi, X. Dong, L. Zhang, and H. Zeng, “A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior,” Journal of Biomedical Materials Research A, vol. 84, pp. 84–91, 2008.
[26]
K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006.
[27]
D. Bellucci, V. Cannillo, G. Ciardelli, P. Gentile, and A. Sola, “Potassium based bioactive glass for bone tissue engineering,” Ceramics International, vol. 36, no. 8, pp. 2449–2453, 2010.
[28]
H. Liu, H. Yazici, C. Ergun, T. J. Webster, and H. Bermek, “An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration,” Acta Biomaterialia, vol. 4, no. 5, pp. 1472–1479, 2008.
[29]
C. Ergun, H. Liu, T. J. Webster, E. Olcay, ?. Yilmaz, and F. C. Sahin, “Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios,” Journal of Biomedical Materials Research A, vol. 85, no. 1, pp. 236–241, 2008.