全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Evolution and Electrochemical Performance of Li2MnSiO4/C Nanocomposite as Cathode Material for Li-Ion Batteries

DOI: 10.1155/2014/368071

Full-Text   Cite this paper   Add to My Lib

Abstract:

High capacity Li2MnSiO4/C nanocomposite with good rate performance was prepared via a facile sol-gel method using ascorbic acid as carbon source. It had a uniform distribution on particle size of approximately 20?nm and a thin outlayer of carbon. The galvanostatic charge-discharge measurement showed that the Li2MnSiO4/C electrode could deliver an initial discharge capacity of 257.1?mA?h?g?1 (corresponding to 1.56 Li+) at a current density of 10?mA?g?1 at 30°C, while the Li2MnSiO4 electrode possessed a low capacity of 25.6?mA?h?g?1. Structural amorphization resulting from excessive extraction of Li+ during the first charge was the main reason for the drastic capacity fading. Controlling extraction of Li+ could inhibit the amorphization of Li2MnSiO4/C during the delithiation, contributing to a reversible structural change and good cycling performance. 1. Introduction Environmental pollution and energy crisis promote people to search for renewable resources and energy storage device, such as batteries. Rechargeable Li-ion secondary batteries are attracting more and more attention due to their high energy density and environmental friendly features [1]. Recently, orthosilicate Li2MSiO4 (M = Fe, Co, Mn) materials were regarded as the candidate for cathodes [2–4] due to their high theoretical capacity (e.g., Li2MnSiO4: 330?mA?h?g?1). Among this family, Li2MnSiO4 is much easier to achieve the transformation of Mn2+/Mn3+ and Mn3+/Mn4+ to carry out extraction of two Li+ in comparison to other orthosilicates [5, 6]. Li et al. [7] prepared Li2MnSiO4/C through a solution route. The composite electrode exhibited a discharge capacity of 209?mA?h?g?1 at the initial cycle and 140?mA?h?g?1 after ten cycles. Bhaskar et al. [8] fabricated Li2MnSiO4/C by a facile nanocomposite gel precursor route. This composite electrode showed an initial discharge capacity of 330?mA?h?g?1 and a stable discharge capacity of 115?mA?h?g?1 for 30 cycles at room temperature. Devaraju et al. [9] adopted supercritical fluid process to synthesize Li2MnSiO4/C with a mean particle diameter of 4-5?nm. It showed a high capacity of about 320?mA?h?g?1 at the first cycle and 190–220?mA?h?g?1 after 50 cycles. Carbon coating plays a critical role in the improvement of the electrical conductivity of the Li2MnSiO4 and consequently enhancement of discharge capacity. However, this material still has a large irreversible capacity loss and low capacity retention rate upon cycling. Structure change resulting from J-T effects and the dissolution of Mn caused by the disproportionate reaction (Mn3+ → Mn4+ + Mn2+)

References

[1]  A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” Journal of the Electrochemical Society, vol. 144, no. 4, pp. 1188–1194, 1997.
[2]  A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, and J. O. Thomas, “Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material,” Electrochemistry Communications, vol. 7, no. 2, pp. 156–160, 2005.
[3]  M. K. Devaraju, T. Tomai, A. Unemoto, and I. Honma, “Supercritical hydrothermal synthesis of rod like Li2FeSiO4 particles for cathode application in lithium ion batteries,” Electrochimica Acta, vol. 109, pp. 75–81, 2013.
[4]  V. Aravindan, K. Karthikeyan, K. S. Kang, W. S. Yoon, W. S. Kim, and Y. S. Lee, “Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes,” Journal of Materials Chemistry, vol. 21, no. 8, pp. 2470–2475, 2011.
[5]  A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek, and J. Jamnik, “Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1-xSiO4,” Chemistry of Materials, vol. 19, no. 15, pp. 3633–3640, 2007.
[6]  S. K. Liu, J. Xu, D. Z. Li, Y. Hu, X. Liu, and K. Xie, “High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion batteries,” Journal of Power Sources, vol. 232, pp. 258–263, 2013.
[7]  Y.-X. Li, Z.-L. Gong, and Y. Yang, “Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries,” Journal of Power Sources, vol. 174, no. 2, pp. 528–532, 2007.
[8]  A. Bhaskar, M. Deepa, T. N. Rao, and U. V. Varadaraju, “In situ carbon coated Li2MnSiO4/C composites as cathodes for enhanced performance li-ion batteries,” Journal of the Electrochemical Society, vol. 159, no. 12, pp. A1954–A1960, 2012.
[9]  M. K. Devaraju, T. Tomai, A. Unemoto, and I. Honma, “Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications,” RSC Advance, vol. 3, pp. 608–615, 2013.
[10]  T. Muraliganth, K. R. Stroukoff, and A. Manthiram, “Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M?=?Mn and Fe) cathodes for lithium-ion batteries,” Chemistry of Materials, vol. 22, no. 20, pp. 5754–5761, 2010.
[11]  Y. Zhao, C. X. Wu, J. X. Li, and L. H. Guan, “Long cycling life of Li2MnSiO4 lithium battery cathodes under double protection from carbon coating and grapheme network,” Journal of Materials Chemistry A, vol. 1, no. 12, pp. 3856–3859, 2013.
[12]  D. Sun, H. Y. Wang, P. Ding, et al., “In-situ synthesis of carbon coated Li2MnSiO4 nanoparticles with high rate performance,” Journal of Power Sources, vol. 242, pp. 865–871, 2013.
[13]  R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, “Li2MnSiO4 as a potential Li-battery cathode material,” Journal of Power Sources, vol. 174, no. 2, pp. 457–461, 2007.
[14]  K. Karthikeyan, V. Aravindan, S. B. Lee et al., “Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors,” Journal of Power Sources, vol. 195, no. 11, pp. 3761–3764, 2010.
[15]  A. Kojima, T. Kojima, M. Tabuchi, and T. Sakai, “Synthesis of Li2MnSiO4 cathode material using molten carbonate flux method with high capacity and initial efficiency,” Journal of the Electrochemical Society, vol. 159, no. 5, pp. A532–A537, 2012.
[16]  F. Wang, J. Chen, C. Wang, and B. L. Yi, “Fast sol-gel synthesis of mesoporous Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries,” Journal of Electroanalytical Chemistry, vol. 688, pp. 123–129, 2013.
[17]  D. Rangappa, K. D. Murukanahally, T. Tomai, A. Unemoto, and I. Honma, “Ultrathin nanosheets of Li2MSiO4 (M?=?Fe, Mn) as high-capacity Li-ion battery electrode,” Nano Letters, vol. 12, no. 3, pp. 1146–1151, 2012.
[18]  D. M. Kempaiah, D. Rangappa, and I. Honma, “Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries,” Chemical Communications, vol. 48, no. 21, pp. 2698–2700, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133