全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Calcium Hydroxide Nanoparticles and Hypogeum Environment: Test to Understand the Best Way of Application

DOI: 10.1155/2014/167540

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a long time the conservation of archaeological artefacts has been based on the principles of compatibility and minimal intervention. This involves a series of partially unsolved problems, concerning the products used for deteriorated structures consolidation. The choice of materials depends on several factors such as: microclimatic conditions, application methods, and reaction time of products. Recently the employment of nanolime in the consolidation treatments of decorative carbonate matrix surfaces had a great development, thanks to multifunctional use in calcium standard-sized particles treatments. However, while the use of the nanostructured materials is described in several specialized papers, the information about the best conditions of applicability of the nanolime and its related potentiality for the consolidation in hypogeum environment is rarely considered. The present work is devoted to represent a case study with the aim to give useful elements in order to evaluate the application of nanolime. The funerary inscriptions coming from St. Callixtus Catacombs have been the object of the research carried out in situ and in laboratory, checking indirectly in the short run and in the long run the porosity variation in the materials. The present study intends to indicate the best suspension concentration on consolidation in relationship with hypogeum environment. 1. Introduction This work grows out from the need to develop consolidating treatments tailored for a specific archaeological structure [1] under hypogeal conditions [2]. Generically in a preventive conservation project, treatments and materials are always more frequently evaluated in order to provide two main requisites:(a)minimal impact on the original structures [3], by respecting the antique execution techniques, the customary materials, and the history of the monument [4];(b)highest durability, through the combination of complementary preventive activities, such as monitoring and adjusting environmental parameters and defining a monitoring and routine maintenance plan of the structures, together with graphic and photographic documentation, and the systematic data archiving, in order to easily compare the short-run and the long-run variations. Nanotechnologies and nanolime, as consolidating materials for architectural and stone surfaces [5], have been developed mainly in the last years, for the capability to solve several problems connected with conventional lime treatments, such as incomplete lime carbonation process, limited depth penetration, and the formation of thin white

References

[1]  V. Daniele, G. Taglieri, and R. Quaresima, “The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process,” Journal of Cultural Heritage, vol. 9, no. 3, pp. 294–301, 2008.
[2]  N. Cardinale, G. Rospi, and A. Stazi, “Energy and microclimatic performance of restored hypogeous buildings in south Italy: the “Sassi” district of Matera,” Building and Environment, vol. 45, no. 1, pp. 94–106, 2010.
[3]  F. Piacenti, “Chemistry for the conservation of the cultural heritage,” Science of the Total Environment, vol. 143, no. 1, pp. 113–120, 1994.
[4]  P. D'Armada and E. Hirst, “Nano-lime for consolidation of plaster and stone,” Journal of Architectural Conservation, vol. 18, no. 1, pp. 63–80, 2012.
[5]  V. Daniele and G. Taglieri, “Synthesis of Ca(OH)2 nanoparticles with the addition of Triton X-100. Protective treatments on natural stones: preliminary results,” Journal of Cultural Heritage, vol. 13, no. 1, pp. 40–46, 2012.
[6]  L. Dei and B. Salvadori, “Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay,” Journal of Cultural Heritage, vol. 7, no. 2, pp. 110–115, 2006.
[7]  H. Hosono, Y. Mishima, H. Takezoe et al., Nanomaterials From Research to Applications, Elsevier, London, UK, 2006.
[8]  P. López-Arcea, L. S. Gomez-Villalbaa, L. Pinhob, M. E. Fernández-Vallec, M. álvarez de Buergoa, and R. Forta, “Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques,” Materials Characterization, vol. 61, no. 2, pp. 168–184, 2010.
[9]  S. Sanchez-Moral, L. Luque, S. Cuezva et al., “Deterioration of building materials in Roman catacombs: the influence of visitors,” Science of the Total Environment, vol. 349, no. 1–3, pp. 260–276, 2005.
[10]  P. Albertano, “Deterioration of Roman hypogea by epilythic cyanobacteria and microalgae,” in Science and Technology For the Safeguard of Cultural Heritage in Mediterranean Basin, A. Guarino, et al., Ed., vol. 2, pp. 1303–1308, CNR Editions, Palermo, Italy, 1998.
[11]  A. El-Turki, R. J. Ball, and G. C. Allen, “The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime,” Cement and Concrete Research, vol. 37, no. 8, pp. 1233–1240, 2007.
[12]  A. El-Turki, M. A. Carter, M. A. Wilson, R. J. Ball, and G. C. Allen, “A microbalance study of the effects of hydraulicity and sand grain size on carbonation of lime and cement,” Construction and Building Materials, vol. 23, no. 3, pp. 1423–1428, 2009.
[13]  V. Daniele and G. Taglieri, “Nanolime suspensions applied on natural lithotypes: the influence of concentration and residual water content on carbonatation process and on treatment effectiveness,” Journal of Cultural Heritage, vol. 11, no. 1, pp. 102–106, 2010.
[14]  R. Giorgi, L. Dei, M. Ceccato, C. Schettino, and P. Baglioni, “Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification,” Langmuir, vol. 18, no. 21, pp. 8198–8203, 2002.
[15]  G. Baldi, M. Camaiti, L. Luvidi, C. Mazzotta, and A. M. Mecchi, “Caratteristiche fotocalitiche e antibatteriche dei nanomateriali,” in Arkos, Scienza e Restauro, Luglio/settembre, 2011.
[16]  I. Natali, M. L. Saladino, F. Andriulo et al., “Consolidation and protection by nanolime: Recent advances for the conservation of the graffi ti, Carceri dello Steri Palermo and of the 18th century lunettes, SS.Giuda e Simone Cloister, Corniola (Empoli),” Journal of Cultural Heritage, 2013.
[17]  L. Dei, F. Bandini, A. Felici et al., “Preconsolidation of pictorial layers in frescoes, the high performance of CSGI’s method based on nanolime evaluated by OPD team in Agnolo Gaddi’s La Leggenda della Vera Croce, Santa Croce, Firenze,” in Proceedings of the 23rd International Congress ‘Il consolidamento degli apparati architettonici e decorativi. Conoscenze, Orientamenti, Esperienze’, pp. 217–224, Venezia, Italy, 2007.
[18]  G. Vigliano, “Graffiti and antigraffiti project,” 2002, http://www.icr.beniculturali.it.
[19]  E. Hansen, E. Doehne, J. Fidler, et al., “A review of selected inorganic consolidants and protective treatments for porous calcareous materials.,” Reviews in Conservation, vol. 4, pp. 13–15, 2003.
[20]  R. Giorgi, L. Dei, and P. Baglioni, “A new method for consolidating wall paintings based on dispersions of lime in alcohol,” Studies in Conservation, vol. 45, no. 3, pp. 154–161, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133