全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Morphological and Molecular Description of Phytophthora insolita Isolated from Citrus Orchard in India

DOI: 10.1155/2013/247951

Full-Text   Cite this paper   Add to My Lib

Abstract:

Citrus, an important cash crop in India, is adversely affected by Phytophthora nicotianae, P. palmivora, and P. citrophthora. Phytophthora insolita is known to be associated with citrus and reported for the first time in India. It is a rare and poorly characterized Phytophthora species, as its natural host and pathogenic impact are unclear. Previously, it was reported only in Taiwan and China; so to confirm our suspected isolate is P. insolita, regions of internal transcribed spacer, elongation factor, beta-tubulin, and cytochrome oxidase genes were sequenced. This study provides description of the lone Indian P. insolita isolate with respect to molecular identity, morphology, mating behaviour, and pathogenicity. 1. Introduction Phytophthora species (Greek-plant destroyer) are important plant pathogens, formerly thought to be fungus but its closest widely known relatives are brown algae and diatoms [1]. It is a representative of kingdom Chromalveolata, phylum Heterokontophyta, and class Oomycota. It affects almost every cultivated or forest vegetation. Phytophthora persists mainly in the soil as “chlamydospores” and spreads generally by asexual spores called “zoospores”; both of them are capable of infection by developing mycelia and parasitizing the host, but the latter is more potent. Citrus is an important tropical crop, cultivated in nearly 135 countries, and is vulnerable to more than 100 diseases and disorders [2]. Phytophthora induced diseases, however, cause enormous damage and economic losses in citrus production. There are 12 Phytophthora species known to infect citrus worldwide, namely, P. boehmeriae, P. cactorum, P. capsici, P. cinnamomi, P. citricola, P. citrophthora, P. drechsleri, P. hibernalis, P. megasperma, P. palmivora, P. nicotianae, and P. syringe [3]. There are reports of other associated Phytophthora species, like P. insolita and P. humicola, isolated from soil in a citrus orchard [4]. In India, P. nicotianae, P. palmivora, and P. citrophthora are major citrus pathogens [5, 6]. Recently we have reported P. insolita from India for the first time, which was isolated from Nagpur mandarin (Citrus reticulata) orchard [7]. P. insolita was reported for the first time from citrus soil in Changhua, Taiwan [4]. The species was noticed in southern China’s Hainan Island [8] and Ohio, USA (from necrotic Rhododendron leaf) [9]. The species remains poorly described and characterized in the literature as compared to other Phytophthora species, which may be due to its infrequent isolation. Moreover, the pathological impact of this citrus

References

[1]  S. M. Adl, A. G. B. Simpson, M. A. Farmer et al., “The new higher level classification of eukaryotes with emphasis on the taxonomy of protists,” Journal of Eukaryotic Microbiology, vol. 52, no. 5, pp. 399–451, 2005.
[2]  S. A. M. H. Naqvi, “Diagnosis and management of certain important fungal diseases of citrus,” in Diseases of Fruits and Vegetables: Diagnosis and Management, S. A. M. H. Naqvi, Ed., vol. 1, pp. 247–290, Kluwer Academic, Dordrecht, The Netherlands, 2004.
[3]  D. C. Erwin and O. K. Ribeiro, Phytophthora Diseases Worldwide, APS, St. Paul, Minn, USA, 1996.
[4]  P. J. Ann and W. H. Ko, “Phytophthora insolita, a new species from Taiwan,” Mycologia, vol. 72, no. 6, pp. 1180–1185, 1980.
[5]  S. A. M. H. Naqvi, “Distribution of citrus Phytophthora spp. and mating types pathogenic to citrus in Central India,” Journal of Mycology and Plant Pathology, vol. 36, no. 1, pp. 44–48, 2006.
[6]  A. K. Das, A. Kumar, A. A. Ingle, and S. G. Nerkar, “Molecular identification of Phytophthora spp. causing citrus decline in Vidarbha region of Maharashtra,” Indian Phytopathology, vol. 64, no. 4, pp. 342–345, 2011.
[7]  A. K. Das, A. Kumar, S. G. Nerkar, and S. S. Bawage, “First report of Phytophthora insolita from India,” Australasian Plant Disease Notes, vol. 7, no. 1, pp. 131–132, 2012.
[8]  H. H. Ho, H. C. Zeng, and F. C. Zheng, “Phytophthora insolita on Hainan Island,” Botanical Bulletin of Academia Sinica, vol. 43, no. 3, pp. 227–230, 2002.
[9]  A. Testa, M. Schilb, J. S. Lehman, G. Cristinzio, and P. Bonello, “First report of Phytophthora insolita and P. inflata on rhododendron in Ohio,” Plant Disease, vol. 89, no. 10, p. 1128, 2005.
[10]  M. S. Ali-Shtayeh and J. D. MacDonald, “Occurrence of Phytophthora species in irrigation water in the Nablus area (West Bank of Jordan),” Phytopathologia Mediterranea, vol. 30, no. 3, pp. 143–150, 1991.
[11]  T. Kaosiri, G. A. Zentmyer, and D. C. Erwin, “Oospore morphology and germination in the Phytophthora palmivora complex from Cacao,” Mycologia, vol. 72, no. 5, pp. 888–907, 1980.
[12]  D. E. L. Cooke, A. Drenth, J. M. Duncan, G. Wagels, and C. M. Brasier, “A molecular phylogeny of Phytophthora and related Oomycetes,” Fungal Genetics and Biology, vol. 30, no. 1, pp. 17–32, 2000.
[13]  L. P. N. M. Kroon, F. T. Bakker, G. B. M. van den Bosch, P. J. M. Bonants, and W. G. Flier, “Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences,” Fungal Genetics and Biology, vol. 41, no. 8, pp. 766–782, 2004.
[14]  F. N. Martin, “Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene,” Mycologia, vol. 92, no. 4, pp. 711–727, 2000.
[15]  D. E. L. Cooke, J. M. Duncan, N. A. Williams, M. H. Weerdt, and P. J. M. Bonants, “Identification of Phytophthora species on the basis of restriction enzyme fragment analysis of the internal transcribed spacer regions of ribosomal RNA,” EPPO Bulletin, vol. 30, no. 3-4, pp. 519–523, 2000.
[16]  K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[17]  W. H. Ko, “Hormonal regulation of sexual reproduction in Phytophthora,” Journal of General Microbiology, vol. 116, no. 2, pp. 459–463, 1980.
[18]  P. J. Ann and W. H. Ko, “An asexual variant of Phytophthora insolita,” Canadian Journal of Microbiology, vol. 40, no. 10, pp. 810–815, 1994.
[19]  H. S. Chang, “Phytophthora species associated with strawberry fruit rot in Taiwan,” Botanical Bulletin of Academia Sinica, vol. 29, no. 1, pp. 61–67, 1988.
[20]  P. Kong, B. M. Tyler, P. A. Richardson, B. W. Lee, Z. S. Zhou, and C. Hong, “Zoospore interspecific signaling promotes plant infection by Phytophthora,” BMC Microbiology, vol. 10, article 313, 2010.
[21]  A. K. Das, S. G. Nerkar, S. S. Bawage, and A. Kumar, “First report of Phytophthora lacustris from India,” Journal of Plant Pathology, vol. 95, no. 2, pp. 447–452, 2013.
[22]  M. A. Dick, K. Dobbie, D. E. L. Cooke, and C. M. Brasier, “Phytophthora captiosa sp. nov. and P. fallax sp. nov. causing crown dieback of Eucalyptus in New Zealand,” Mycological Research, vol. 110, no. 4, pp. 393–404, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133