全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Magnetic Behavior of Natural Fe2O3 from Lhoong Iron Ore Mining Area, Aceh Province, Indonesia

DOI: 10.1155/2013/212803

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mineral composition and magnetic behavior of nano-Fe2O3 of iron ore from Lhoong mining area, Aceh province, were studied. The iron ore was prepared by mechanical milling method. The mineral and chemical compositions of samples were investigated by XRD and XRF analysis tests. The XRF test showed that the Lhoong iron ore contains Fe2O3 (93.88%) in association with other isomorphous impurities, such as SiO2, MnO, and Al2O3, in varying proportions. Compared to XRD results, it was consistent with XRF; the phase compositions of iron ore were mainly hematite (Fe2O3). The XRD revealed that hematite was the major mineral component in the Lhoong iron ores. SEM observation showed fine crystalline structure of Lhoong iron ore after the milling process. The main mineral morphology was microcrystalline in agglomerate forms. The magnetic properties of the samples after milling showed the increasing in the remanent (Br) and coercivity (Hc). This increasing can be explained that nano-Fe2O3 phase after milling for 20 hours plays an important role in the magnetic behavior of Lhoong iron ore. It is understood that the longer milling time is sufficient to complete the transformation of hematite (Fe2O3) to magnetite (Fe3O4). 1. Introduction Nowadays, iron oxide plays a crucial role in various applications and is intensively investigated, especially for its application in magnetic materials [1]. This type of materials has diverse applications, from data storage to biocatalysis applications [2–6]. For advanced material applications, one of today’s challenges is the production of nanostructured metal oxide materials. Interestingly, iron oxide can be obtained from natural iron ore (e.g., from mineral rock, beach sand, etc.). Indonesia, which is rich in iron ore, should strive for self-sufficiency in meeting the needs of the industry, such as iron-steel industry. One of the areas known as the largest deposits of iron ore is the Aceh province. In this paper we provide a qualitative data that includes the identification phase, the percentage of mineral, morphology, and the magnetic properties of the iron ore in Lhoong, Aceh Besar. Iron ore reserves in Aceh are spread in several areas such as Aceh Besar, Pidie, Aceh Barat Daya, Aceh Selatan, Subulussalam, Gayo Lues, and Aceh Timur with total deposits exceeding 92.3 million tonnes [7]. Lhoong area, as already mined, has a deposit of 4.2 million tonnes. Mostly, the Lhoong iron ore is exported abroad. 2. Materials and Methods The iron ore samples were collected from the strip mine in Lhoong area, Aceh Besar district, Aceh Province,

References

[1]  W. Wu, Q. He, and C. Jiang, “Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies,” Nanoscale Research Letters, vol. 3, no. 11, pp. 397–415, 2008.
[2]  D. Patel, J. Y. Moon, Y. Chang, T. J. Kim, and G. H. Lee, “Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: synthesis, characterization and in vivo study as MRI contrast agent,” Colloids and Surfaces A, vol. 313-314, pp. 91–94, 2008.
[3]  M. Zhao, L. Josephson, Y. Tang, and R. Weissleder, “Magnetic sensors for protease assays,” Angewandte Chemie—International Edition, vol. 42, no. 12, pp. 1375–1378, 2003.
[4]  S. Mornet, S. Vasseur, F. Grasset et al., “Magnetic nanoparticle design for medical applications,” Progress in Solid State Chemistry, vol. 34, no. 2–4, pp. 237–247, 2006.
[5]  P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, and Y. Gao, “Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions,” Organic Letters, vol. 7, no. 11, pp. 2085–2088, 2005.
[6]  Y.-W. Jun, J.-S. Choi, and J. Cheon, “Heterostructured magnetic nanoparticles: their versatility and high performance capabilities,” Chemical Communications, no. 12, pp. 1203–1214, 2007.
[7]  Aceh’s Featured Minerals, Department of Mines and Energy, Banda Aceh, Indonesia, 2010.
[8]  G. P. Barreto, G. Morales, and Ma. L. L. Quintanilla, “Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development,” Journal of Materials, vol. 2013, Article ID 478681, 11 pages, 2013.
[9]  H. F. Li and R. V. Ramanujan, “Mechanical alloying of FeCo nanocrystalline magnetic powders,” Journal of Electronic Materials, vol. 33, no. 11, pp. 1289–1297, 2004.
[10]  X. H. Liu, W. B. Cui, W. Liu, X. G. Zhao, D. Li, and Z. D. Zhang, “Exchange bias and phase transformation in α-Fe2O3/Fe3O4 nanocomposites,” Journal of Alloys and Compounds, vol. 475, no. 1-2, pp. 42–45, 2009.
[11]  E. Petrovsky, M. D. Alcalá, J. M. Criado, T. Grygar, A. Kapi?ka, and J. ?ubrt, “Magnetic properties of magnetite prepared by ball-milling of hematite with iron,” Journal of Magnetism and Magnetic Materials, vol. 210, no. 1–3, pp. 257–273, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133