全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inhibition Effect of Substituted Thiadiazoles on Corrosion Activity of N80 Steel in HCl Solution

DOI: 10.1155/2013/256403

Full-Text   Cite this paper   Add to My Lib

Abstract:

The inhibition effect of some prepared compounds, namely, thiadiazole derivatives, on N80 steel corrosion in 15% HCl solutions has been studied by using the weight loss, electrochemical polarization, and electrochemical impedance spectroscopy techniques. It was found that the inhibition efficiency of the thiadiazole derivatives, namely, 2-amino-5-(4-methoxyphenyl)-1,3,4-thiazole (AMPT), 2-amino-5-phenyl-1,3,4-thiazole (APT), and 2-amino-5-(4-chlorophenyl)-1,3,4-thiazole (ACPT), increases with the increase in concentration. Inhibition efficiency follows the order AMPT > APT > ACPT. The effect of temperature on the corrosion was investigated by the weight loss method, and some thermodynamic parameters were calculated. The inhibitive action may be attributed to the adsorption of inhibitor molecules on the active sites of the metal surface following Langmuir adsorption isotherm. Polarization measurements indicated that thiadiazole derivatives act as mixed-type corrosion inhibitor. The adsorption of thiadiazole derivatives on N80 surface exposed to inhibitor-containing solutions was confirmed using SEM and FT-IR spectra. 1. Introduction N80 carbon steel has been generally used as the main construction material for down hole tubular, flow lines, and transmission pipelines in petroleum industry. In most industrial processes, acidic solutions are commonly used for pickling, industrial acid cleaning, acid descaling, oil well acidifying, and so forth [1–5]. It is commonly noticed that 15–28% of hydrochloric acid is used for the acidization of petroleum oil wells [6, 7]. Because of their aggressiveness, iron and its alloys get corrodes during these acidic applications particularly with the use of hydrochloric acid and sulphuric acid, which results in terrible waste of both resources and money [8]. Addition of inhibitor remains the necessary procedure to secure the metal against acid attack. Therefore, corrosion inhibitors for HCl solutions have attracted more attention. Most of the well-known corrosion inhibitors are organic compounds containing polar groups having nitrogen, sulphur, and/or oxygen atoms and heterocyclic compounds with polar functional groups and conjugated double bonds [9, 10]. These compounds can adsorb on the metal surface and partially blocking the active sites on the surface, thereby reducing the corrosion rate. Among different nitrogen- and sulphur-containing compounds, thiosemicarbazide has been reported to be a potential inhibitor for different metals [11, 12]. Most of the investigation is related to the application of common inhibitors

References

[1]  I. Ahamad and M. A. Quraishi, “Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media,” Corrosion Science, vol. 51, no. 9, pp. 2006–2013, 2009.
[2]  Q. B. Zhang and Y. X. Hua, “Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid,” Electrochimica Acta, vol. 54, no. 6, pp. 1881–1887, 2009.
[3]  W. Li, Q. He, C. Pei, and B. Hou, “Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media,” Electrochimica Acta, vol. 52, no. 22, pp. 6386–6394, 2007.
[4]  R. Solmaz, G. Kardas, B. Yaz?c?, and M. Erbil, “Inhibition effect of rhodanine for corrosion of mild steel in hydrochloric acid solution,” Protection of Metals, vol. 41, no. 6, pp. 581–585, 2005.
[5]  G. Kardas, “The inhibition effect of 2-thiobarbituric acid on the corrosion performance of mild steel in HCl solution,” Fiziko-Khimicheskaya Mekhanika Materialov, vol. 41, no. 3, pp. 337–343, 2005.
[6]  M. Yadav, D. Behera, and U. Sharma, “Development of corrosion inhibitors used in acidization of petroleum oil well,” Der Chemica Sinica, vol. 3, pp. 262–268, 2012.
[7]  M. Yadav, D. Behera, and U. Sharma, “Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid,” Arabian Journal of Chemistry, 2012.
[8]  M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, and R. S. Bayoumi, “The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid. Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies,” Electrochimica Acta, vol. 52, no. 11, pp. 3588–3600, 2007.
[9]  S. T. Selvi, V. Raman, and N. Rajendran, “Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium,” Journal of Applied Electrochemistry, vol. 33, no. 12, pp. 1175–1182, 2003.
[10]  F. Bentiss, M. Lebrini, H. Vezin, and M. Lagrenée, “Experimental and theoretical study of 3-pyridyl-substituted 1,2,4-thiadiazole and 1,3,4-thiadiazole as corrosion inhibitors of mild steel in acidic media,” Materials Chemistry and Physics, vol. 87, no. 1, pp. 18–23, 2004.
[11]  S. K. Shukla and E. E. Ebenso, “Effect of condensation product of thiosemicarbazide and phenyl isothiocynate on corrosion of mild steel in sulphuric acid medium,” International Journal of Electrochemcal Science, vol. 7, pp. 12134–12145, 2012.
[12]  I. A. Ammar and S. Darwish, “Effect of some ions on inhibition of the acid corrosion of fe by thiourea,” Corrosion Science, vol. 7, no. 9, pp. 579–596, 1967.
[13]  D. D. N. Singh, M. M. Singh, R. S. Chaudhary, and C. V. Agarwal, “Inhibitive effects of isatin, thiosemicarbazide and isatin-3-(3-thiosemicarbazone) on the corrosion of aluminium alloys in nitric acid,” Journal of Applied Electrochemistry, vol. 10, no. 5, pp. 587–592, 1980.
[14]  G. Trabanelli, G. Brunoro, C. Monticells, and M. Foganolo, in Proceedings of the 9th ICMC, Toronto, Canada, June 1984.
[15]  G. D. M. Z. Zhon, R. Tong, and T. Notoxa, Bulletin of the Electrochemical Society, vol. 7, p. 60, 1991.
[16]  R. M. Souto, V. Fox, M. M. Laz, M. Pérez, and R. S. González, “Some experiments regarding the corrosion inhibition of copper by benzotriazole and potassium ethyl xanthate,” Journal of Electroanalytical Chemistry, vol. 411, no. 1-2, pp. 161–165, 1996.
[17]  E. Otero and J. M. Bastidas, “Cleaning of two hundred year-old copper works of art using citric acid with and without benzotriazole and 2-amino-5-mercapto-1,3,4-thiadiazole,” Materials and Corrosion, vol. 47, no. 3, pp. 133–138, 1996.
[18]  S. S. Mahmoud and E. G. A. Malidy, Egyptian Journal of Chemistry, vol. 39, p. 365, 1996.
[19]  O. O. Xometl, N. V. Likhanova, N. Nava et al., “Thiadiazoles as corrosion inhibitors for carbon steel in H2SO4 solutions,” International Journal of Electrochemcal Science, vol. 8, pp. 735–752, 2013.
[20]  X. J. Raj and N. Rajendran, “Corrosion inhibition effect of substituted thiadiazoles on brass,” International Journal of Electrochemical Science, vol. 6, no. 2, pp. 348–366, 2011.
[21]  A. Shafiee, E. Naimi, P. Mansobi, A. Foroumadi, and M. Shekari, “Syntheses of substituted-oxazolo-1,3,4-thiadiazoles, 1,3,4-oxadiazoles, and 1,2,4-triazoles,” Journal of Heterocyclic Chemistry, vol. 32, no. 4, pp. 1235–1239, 1995.
[22]  N. A. Negm, A. A. Hafiz, and M. Y. El Awady, “Influence of structure of the cationic polytriethanolammonium bromide derivatives. II. Corrosion inhibition,” Egyptian Journal of Chemistry, vol. 48, no. 2, pp. 201–210, 2005.
[23]  A. U. Ezeoke, O. G. Adeyemi, O. A. Akerele, and N. O. Obi-Egbedi, “Computational and experimental studies of 4-Aminoantipyrine as corrosion inhibitor for mild steel in sulphuric acid solution,” International Journal of Electrochemical Science, vol. 7, no. 1, pp. 534–553, 2012.
[24]  E. E. Ebenso and I. B. Obot, “Inhibitive properties, thermodynamic characterization and quantum chemical studies of secnidazole on mild steel corrosion in acidic medium,” International Journal of Electrochemical Science, vol. 5, no. 12, pp. 2012–2035, 2010.
[25]  K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochimica Acta, vol. 35, no. 10, pp. 1501–1508, 1990.
[26]  I. Dehri and M. ?zcan, “The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds,” Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 316–323, 2006.
[27]  G. Moretti, G. Quartarone, A. Tassan, and A. Zingales, “Pitting corrosion behavior of superferritic stainless steel in waters containing chloride,” Werkstoffe und Korrosion, vol. 44, no. 1, pp. 24–30, 1993.
[28]  V. R. Saliyan and A. V. Adhikari, “Inhibition of corrosion of mild steel in acid media by N'-benzylidene-3- (quinolin-4-ylthio)propanohydrazide,” Bulletin of Materials Science, vol. 31, no. 4, pp. 699–711, 2008.
[29]  D. Jayaperumal, “Effects of alcohol-based inhibitors on corrosion of mild steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 119, no. 3, pp. 478–484, 2010.
[30]  W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008.
[31]  M. S. Morad, “An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions,” Corrosion Science, vol. 42, no. 8, pp. 1307–1326, 2000.
[32]  G. Gunasekaran and L. R. Chauhan, “Eco friendly inhibitor for corrosion inhibition of mild steel in phosphoric acid medium,” Electrochimica Acta, vol. 49, no. 25, pp. 4387–4395, 2004.
[33]  A. Alagta, I. Felh?si, J. Telegdi, I. Bertóti, and E. Kálmán, “Effect of metal ions on corrosion inhibition of pimeloyl-1,5-di-hydroxamic acid for steel in neutral solution,” Corrosion Science, vol. 49, no. 6, pp. 2754–2766, 2007.
[34]  R. Solmaz, “Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid,” Corrosion Science, vol. 52, no. 10, pp. 3321–3330, 2010.
[35]  I. Ahamad, R. Prasad, and M. A. Quraishi, “Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media,” Corrosion Science, vol. 52, no. 4, pp. 1472–1481, 2010.
[36]  B. Trachli, M. Keddam, H. Takenouti, and A. Srhiri, “Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5?M NaCl,” Corrosion Science, vol. 44, no. 5, pp. 997–1008, 2002.
[37]  J. D. Talati and D. K. Gandhi, “N-heterocyclic compounds as corrosion inhibitors for aluminium-copper alloy in hydrochloric acid,” Corrosion Science, vol. 23, no. 12, pp. 1315–1332, 1983.
[38]  Z. Szklarska-Smialowska and J. Mankowski, “Crevice corrosion of stainless steels in sodium chloride solution,” Corrosion Science, vol. 18, no. 11, pp. 953–960, 1978.
[39]  A. Yurt, S. Ulutas, and H. Dal, “Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases,” Applied Surface Science, vol. 253, no. 2, pp. 919–925, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133