全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanical Response of Al-1.09Mg2Si Alloy under Varying Mould and Thermal Ageing Conditions

DOI: 10.1155/2012/921235

Full-Text   Cite this paper   Add to My Lib

Abstract:

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520°C, soaked for 6?hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175°C for 3–7?hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8?MPa; microhardness, 68.5?HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process. 1. Introduction Casting is one of the most versatile methods of producing structural aluminium alloy components. However, the rather large preponderance of defects in cast aluminium components often limits their performance and adversely impacts their commercial values. Hence there is the need for a novel processing approach to improve the cast microstructure for enhanced performance. Generally, the poor mechanical properties of cast aluminium alloys can be improved through either alloy addition or various forms of heat treatment [1]. During the heat treatment of cast aluminium alloys, an advantage is made of the characteristic decrease in solubility at low temperature of magnesium (Mg) and silicon (Si) which are the main alloying elements in Al-Mg-Si alloy. Further, Keist [2] confirms that the appreciable decrease in concentration of the alloying elements at room temperature is the fundamental phenomenon that provides the basis for increasing substantially the hardness and strength of aluminium alloys through isothermal treatment. Similarly, Siddiqui et al. [3] have shown that improved ductility can be achieved by process annealing at 415°C, soaked between two and three hours coupled with a cooling rate 30°C per hour. Generally, strength improvement of most 6063 aluminium alloys can be effected in a three-pronged approach comprising solution heat treatment, quenching, and precipitation of solute atoms [4]. However, the greatest challenge usually encountered with this approach is effective control of the second-phase precipitates. Lumley et al. [5]

References

[1]  R. A. Siddiqui, H. A. Abdullah, and K. R. Al-Belushi, “Influence of aging parameters on the mechanical properties of 6063 aluminium alloy,” Journal of Materials Processing Technology, vol. 102, no. 1, pp. 234–240, 2000.
[2]  J. Keist, “The development of a fluidized bed process for the heat treatment of aluminum alloys,” Journal of Materials, vol. 57, no. 4, pp. 34–39, 2005.
[3]  R. A. Siddiqui, S. A. Abdul-Wahab, and T. Pervez, “Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence,” Materials and Design, vol. 29, no. 1, pp. 70–79, 2008.
[4]  W. Callister, Materials Science and Engineering: An Introduction, John Wiley and Sons, Clementi Loop, Singapore, 6th edition, 2006.
[5]  R. N. Lumley, I. J. Polmear, and A. J. Morton, “Control of secondary precipitation to improve the performance of aluminium alloys,” Materials Science Forum, vol. 396–402, no. 2, pp. 893–898, 2002.
[6]  R. Q. Gao, K. Stiller, V. Hansen, A. Oskarsson, and F. Danoix, “Influence of aging conditions on the microstructure and tensile strength of aluminium alloy 6063,” Materials Science Forum, vol. 396–402, no. 2, pp. 1211–1216, 2002.
[7]  G. Al-Marahleh, “Effect of heat treatment on the distribution and volume fraction of Mg2Si in structural aluminum alloy 6063,” Metal Science and Heat Treatment, vol. 48, no. 5-6, pp. 205–209, 2006.
[8]  M. Cai, D. P. Field, and G. W. Lorimer, “A systematic comparison of static and dynamic ageing of two Al-Mg-Si alloys,” Materials Science and Engineering A, vol. 373, no. 1-2, pp. 65–71, 2004.
[9]  C. S. Tsao, C. Y. Chen, U. S. Jeng, and T. Y. Kuo, “Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys,” Acta Materialia, vol. 54, no. 17, pp. 4621–4631, 2006.
[10]  G. Sha, K. O'Reilly, B. Cantor, J. Worth, and R. Hamerton, “Growth related metastable phase selection in a 6xxx series wrought Al alloy,” Materials Science and Engineering A, vol. 304-306, no. 1-2, pp. 612–616, 2001.
[11]  A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening in Al-Mg-Si alloys with and without excess Si,” Materials Science and Engineering A, vol. 316, no. 1-2, pp. 11–17, 2001.
[12]  T. Nahoto, C. Fumyochi, S. Tomohisa, and F. Kouichiro, “Precipitation behavior of Al-Mg-Si tenary alloys,” Materials Science Forum, vol. 217–222, pp. 815–820, 1996.
[13]  A. Chennakesava and E. Zitoun, “Tensile behaviour of 6063/Al2O3 particulate metal matrix composite fabricated by investment casting process,” International Journal of Applied Engineering Research, vol. 1, no. 3, pp. 542–552, 2010.
[14]  L. Karthikeyan and V. S. Senthil Kumar, “Relationship between process parameters and mechanical properties of friction stir processed AA6063-T6 aluminum alloy,” Materials and Design, vol. 32, no. 5, pp. 3085–3091, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133