全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Diacetyl Monoxime Thiosemicarbazone on the Corrosion of Aged 18 Ni 250 Grade Maraging Steel in Sulphuric Acid Solution

DOI: 10.1155/2012/723687

Full-Text   Cite this paper   Add to My Lib

Abstract:

The corrosion inhibition of the aged 18?Ni 250 grade maraging steel in 0.5?M sulphuric acid by diacetyl monoxime thiosemicarbazone (DAMTSC) at 303–323?K has been investigated by potentiodynamic polarization, EIS, and SEM techniques. Good inhibition efficiency of DAMTSC was revealed even at low concentrations, which increased with the increase in DAMTSC concentration and decreased with the increase in temperature. The activation energies, , as well as other thermodynamic parameters ( ; ; ), were evaluated and discussed. The adsorption of DAMTSC on the aged maraging steel surface was found to obey the Langmuir adsorption isotherm model and shows mixed type inhibition behavior. 1. Introduction Corrosion of structural elements is a major issue for any industry because of the chemical environment of chemical processing. Maraging steels are special class of ultrahigh strength steels that differ from conventional steels in that they are hardened by a metallurgical reaction that does not involve carbon [1]. They derive high strength from age hardening of low carbon, Fe-Ni martensitic matrix [2]. The need for highly reliable substances of high strength and high ductility is gradually increasing with the development of aerospace industry. According to available literature, atmospheric exposure of 18 Ni maraging steel leads to corrosion in a uniform manner and the steel becomes completely rust covered [3]. Pit depths tend to be shallower than high strength steels [4]. Critical and passive current densities increase as the structure is varied from fully annealed to fully aged [5]. Maraging steels are found to be less susceptible to hydrogen embrittlement than common high strength steels owing to significantly low diffusion of hydrogen in them [6]. Several technical papers covering alloy design, material processing, thermo-mechanical treatments, welding, strengthening mechanisms, and so forth, have been published [7]. Search in the literature reveals very little work being reported on the corrosion behavior and on the use of inhibitors in controlling corrosion of maraging steel except some of our publications [8, 9]. Metals and alloys frequently come in contact with acid solutions during cleaning, pickling, descaling, acidising, and so forth. Materials used in acid environment should have good corrosion resistance. The present work is intended to study the corrosion inhibition of aged 18 Ni 250 grade maraging steel in 0.5?M sulphuric acid medium using DAMTSC as inhibitor. The majority of the well known inhibitors are organic compounds containing heteroatom, such as

References

[1]  K. Y. Sastry, R. Narayanan, C. R. Shamantha et al., “Stress corrosion cracking of maraging steel weldments,” Materials Science and Technology, vol. 19, no. 3, pp. 375–381, 2003.
[2]  K. Rohrbach and M. Schmidt, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1 of ASM Handbook, 10th edition, 1990.
[3]  W. W. Kirk, R. A. Covert, and T. P. May, “Corrosion behaviour of high-strength steels in marine environment,” Metals Engineering Quarterly, vol. 8, pp. 31–38, 1968.
[4]  S. W. Dean and H. R. Copson, “Stress corrosion behaviour of maraging steel in natural environments,” Corrosion, vol. 21, pp. 95–103, 1965.
[5]  Data bulletin on 18%Ni maraging steel. The International Nickel Company, INC, 1964.
[6]  J. Rezek, I. E. Klein, and J. Yhalom, “Electrochemical properties of protective coatings on maraging steel,” Corrosion Science, vol. 39, pp. 385–397, 1997.
[7]  P. P. Sinha, “Design and development of new variety of 250 grade stainless steel maraging steel,” Transactions of The IIM, vol. 35, article 2, 1982.
[8]  T. Poornima, N. Jagannatha, and A. Nityananda Shetty, “Studies on corrosion of annealed and aged 18 Ni 250 grade maraging steel in sulphuric acid medium,” Portugaliae Electrochimica Acta, vol. 28, no. 3, pp. 173–188, 2010.
[9]  T. Poornima, J. Nayak, and A. Nityananda Shetty, “3,4-Dimethoxybenzaldehydethiosemicarbazone as corrosion inhibitor for aged 18 Ni 250 grade maraging steel in 0.5 M sulfuric acid,” Journal of Applied Electrochemistry, vol. 41, no. 2, pp. 223–233, 2011.
[10]  F. Bentiss, M. Lebrini, and M. Lagrenee, “Thermodynamic characterizationof metal dissolution and inhibitor adsorption processes in mild steel/2. 5-bis(n-thienyl)-1. 3. 4-thiadiazoles/hydrochloric acidsystem,” Corrosion Science, vol. 47, pp. 2915–2931, 2005.
[11]  M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée, “The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: structure-activity correlation,” Corrosion Science, vol. 48, no. 5, pp. 1279–1291, 2006.
[12]  P. Lowmunkhong, D. Ungthararak, and P. Sutthivaiyakit, “Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution,” Corrosion Science, vol. 52, no. 1, pp. 30–36, 2010.
[13]  S. Sankarapapavinasam, F. Pushpanaden, and M. F. Ahmed, “Piperidine, piperidones and tetrahydrothiopyrones as inhibitors for the corrosion of copper in H2SO4,” Corrosion Science, vol. 32, no. 2, pp. 193–203, 1991.
[14]  G. Schmitt, “Application of inhibitors for acid media. Report Prepared for the European Federation of Corrosion Working Party on Inhibitors,” British Corrosion Journal, vol. 19, pp. 165–176, 1984.
[15]  S. Singh, F. Athar, and A. Azam, “Synthesis, spectral studies and in vitro assessment for antiamoebic activity of new cyclooctadiene ruthenium(ii) complexes with 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones,” Bioorganic and Medicinal Chemistry Letters, vol. 15, pp. 5424–5428, 2005.
[16]  B. O. Renata, M. S. F. Elaine, P. P. S. Rodrigo, A. A. Anderson, U. K. Antoniana, and L. Z. Carlos, “Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives,” European Journal of Medicinal Chemistry, vol. 43, p. 1984, 2008.
[17]  J. Easmon, G. Heinisch, W. Holzer, and B. Rosenwirth, “Novel thiosemicarbazones derived from formyl- and acyldiazines: synthesis, effects on cell proliferation, and synergism with antiviral agents,” Journal of Medicinal Chemistry, vol. 35, no. 17, pp. 3288–3296, 1992.
[18]  O. Efanga Offiong and S. Martelli, “Antifungal and antibacterial activity of 2-acetylpyridine-(4-phenylthiosemicarbazone) and its metal (II) complexes,” Farmaco, vol. 47, no. 12, pp. 1543–1554, 1992.
[19]  O. E. Offiong and S. Martelli, “Synthesis, antibacterial and antifungal activity of metal (II) complexes of 2-acetylpyridine thiosemicarbazones,” Farmaco, vol. 48, no. 6, pp. 777–793, 1993.
[20]  S. T. Arab, “Inhibition action of thiosemicabazone and some of it is ρ-substituted compounds on the corrosion of iron-base metallic glass alloy in 0.5 M H2SO4 at 30°C,” Materials Research Bulletin, vol. 43, pp. 510–521, 2008.
[21]  B. A. Abd El-Nabey, E. Khamis, G. E. Thompson, and J. L. Dawson, “Effect of temperature on the inhibition of the acid corrosion of steel by benzaldehyde thiosemicarbazone: impedance measurements,” Surface and Coatings Technology, vol. 28, no. 1, pp. 83–91, 1986.
[22]  E. E. Ebenso, U. J. Ekpe, B. I. Ita, O. E. Offiong, and U. J. Ibok, “Effect of molecular structure on the efficiency of amides and thiosemicarbazones used for corrosion inhibition of mild steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 60, no. 1, pp. 79–90, 1999.
[23]  K. Stanly Jacob and G. Parameswaran, “Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone,” Corrosion Science, vol. 52, no. 1, pp. 224–228, 2010.
[24]  A. Riose and M. Valcarcel, “Homogeneous precipitation of palladium dimethylglyoximate by interchange reactions of C=N groups,” Analyst, vol. 107, pp. 737–743, 1982.
[25]  M. G. Fontana, Corrosion Engineering, McGraw-Hill, Singapore, 3rd edition, 1987.
[26]  W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008.
[27]  C. Cao, “On electrochemical techniques for interface inhibitor research,” vol. 38, no. 12, pp. 2073–2082, 1996.
[28]  A. R. El-Sayed, A. M. Shaker, and H. M. Abd El-Lateef, “Corrosion inhibition of tin, indium and tin-indium alloys by adenine or adenosine in hydrochloric acid solution,” Corrosion Science, vol. 52, no. 1, pp. 72–81, 2010.
[29]  S. S. Abd El-Rehim, H. H. Hassan, and M. A. Amin, “Corrosion inhibition study of pure Al and some of its alloys in 1.0 M HCl solution by impedance technique,” Corrosion Science, vol. 46, pp. 5–25, 2004.
[30]  W. Li, Q. He, C. Pei, and B. Hou, “Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media,” Electrochimica Acta, vol. 52, pp. 6386–6394, 2007.
[31]  W. J. Lorenz and F. Mansfeld, “Determination of corrosion rates by electrochemical DC and AC methods,” Corrosion Science, vol. 21, pp. 647–672, 1982.
[32]  A. A. Aksut, W. J. Lorenz, and F. Mansfeld, “The determination of corrosion rates by electrochemical d.c. and a.c. methods—2. Systems with discontinuous steady state polarization behavior,” Corrosion Science, vol. 22, pp. 611–619, 1982.
[33]  Q. Qu, Z. Hao, L. Li, W. Bai, Y. Liu, and Z. Ding, “Synthesis and evaluation of Tris-hydroxymethyl-(2-hydroxybenzylidenamino)-methane as a corrosion inhibitor for cold rolled steel in hydrochloric acid,” Corrosion Science, vol. 51, no. 3, pp. 569–574, 2009.
[34]  G. Quartarone, L. Ronchin, A. Vavasori, C. Tortato, and L. Bonaldo, “Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions,” Corrosion Science, vol. 64, pp. 82–89, 2012.
[35]  I. Ahamad, R. Prasad, and M. A. Quraishi, “Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media,” Corrosion Science, vol. 52, no. 4, pp. 1472–1481, 2010.
[36]  M. A. Veloz and I. Gonzalez, “Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S,” Electrochimica Acta, vol. 48, pp. 135–144, 2002.
[37]  E. M. Sherif and S. M. Park, “Effects of 1, 4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions,” Electrochimica Acta, vol. 51, pp. 1313–1321, 2006.
[38]  A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003.
[39]  E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons, 2nd edition, 2005.
[40]  A. El-Sayed, “Phenothiazine as inhibitor of the corrosion of cadmium in acidic solutions,” Journal of Applied Electrochemistry, vol. 27, pp. 193–200, 1997.
[41]  A. Popova, M. Christov, and A. Vasilev, “Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors—part 2: electrochemical impedance and polarisation resistance results,” Corrosion Science, vol. 53, no. 5, pp. 1770–1777, 2011.
[42]  B. Seshu, A. K. Bhatnagar, A. Venugopal, and V. S. Raja, “Electrochemical corrosion behaviours of Fe68Ni14-xMoxSi2B16 metallic glasses in 1N HCl and 1N H2SO4,” Journal of Materials Science, vol. 32, pp. 2071–2075, 1997.
[43]  S. T. Arab and K. M. Emran, “Structure effect of some thiosemicarbazone derivatives on the corrosion inhibition of Fe78B13Si9 glassy alloy in Na2SO4 solution,” Materials Letters, vol. 62, no. 6-7, pp. 1022–1032, 2008.
[44]  H. Ashassi-Sorkabi, T. A. Aliyev, S. Nasiri, and R. Zarepoor, Electrochimica Acta, vol. 52, p. 5240, 2007.
[45]  M. A. Amin, K. F. Khaled, and S. A. Fadl-Allah, “Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions—experimental and theoretical studies,” Corrosion Science, vol. 52, no. 1, pp. 140–151, 2010.
[46]  H. H. Hassan, E. Abdelghani, and M. A. Amin, “Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives—part I. Polarization and EIS studies,” Electrochimica Acta, vol. 52, pp. 6359–6364, 2007.
[47]  C. H. Hsu and F. Mansfeld, “Concernng the conversion of the constant phase element parameter Y0 into a capacitance,” Corrosion, vol. 57, no. 9, pp. 747–748, 2001.
[48]  E. McCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of The Electrochemical Society, vol. 119, pp. 146–154, 1972.
[49]  F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000.
[50]  L. Larabi, Y. Harek, O. Benali, and S. Ghalem, “Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl,” Progress in Organic Coatings, vol. 54, p. 261, 2005.
[51]  M. Schorr and J. Yahalom, “The significance of the energy of activation for the dissolution reaction of metal in acids,” Corrosion Science, vol. 12, no. 11, pp. 867–868, 1972.
[52]  M. M. Solomon, S. A. Umoren, I. I. Udosoro, and A. P. Udoh, “Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution,” Corrosion Science, vol. 52, no. 4, pp. 1317–1325, 2010.
[53]  L. Antropov, “A correlation between kinetics of corrosion and the mechanism of inhibition by organic compounds,” Corrosion Science, vol. 7, pp. 607–620, 1967.
[54]  E. F. E. Sherbini, “Effect of some ethoxylated fatty acids on the corrosion behaviour of mild steel in sulphuric acid solution,” Materials Chemistry and Physics, vol. 60, pp. 286–290, 1999.
[55]  T. Szauer and A. Brand, “On the role of fatty acid in adsorption and corrosion inhibition of iron by amine-fatty acid salts in acidic solution,” Electrochimica Acta, vol. 26, pp. 1257–1260, 1981.
[56]  M. K. Gomma and M. H. Wahdan, “Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution,” Materials Chemistry and Physics, vol. 39, pp. 209–213, 1995.
[57]  J. Marsh, Advanced Organic Chemistry, Wiley Eastern, New Delhi, India, 3rd edition, 1988.
[58]  M. Sahin, S. Bilgic, and H. Yilmaz, “The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums,” Applied Surface Science, vol. 195, pp. 1–7, 2002.
[59]  B. Ateya, B. E. El-Anadouli, and F. M. El-Nizamy, “The adsorption of thiourea on mild steel,” Corrosion Science, vol. 24, pp. 509–515, 1984.
[60]  E. E. Oguzie, V. O. Njoku, C. K. Enenebeaku, C. O. Akalezi, and C. Obi, “Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media,” Corrosion Science, vol. 50, no. 12, pp. 3480–3486, 2008.
[61]  M. Hosseini, S. F. L. Mertens, and M. R. Arshadi , “Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine,” Corrosion Science, vol. 45, no. 7, pp. 1473–1489.
[62]  A. K. Singh and M. A. Quraishi, “Effect of Cefazolin on the corrosion of mild steel in HCl solution,” Corrosion Science, vol. 52, pp. 152–160, 2010.
[63]  W. Durnie, R. De Marco, A. Jefferson, and B. Kinsella, “Development of a structure-activity relationship for oil field corrosion inhibitors,” Journal of the Electrochemical Society, vol. 146, no. 5, pp. 1751–1756, 1999.
[64]  S. Martinez and I. Stern, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system,” Applied Surface Science, vol. 199, pp. 83–89, 2002.
[65]  J. O. M. Bockris, M. A. Devanathan, and K. Muller, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system,” Proceedings of the Royal Society A, vol. 274, pp. 55–79, 1963.
[66]  M. A. V. Devanathan and Z. Stachurski, “The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates,” Journal of The Electrochemical Society, vol. 111, p. 619, 1964.
[67]  E. J. Kelly, “Iron dissolution and hydrogen evolution reactions in acidic sulfate solutions,” Journal of The Electrochemical Society, vol. 112, pp. 124–131, 1965.
[68]  A. Frignani, M. Tassinari, and G. Trabanelli, “Impedance measurements on Armco iron in acid solution inhibited by S-containing additives,” Electrochimica Acta, vol. 34, no. 8, pp. 1259–1263, 1989.
[69]  E. McCafferty and N. Hackerman, “Kinetics of iron corrosion in concentrated acidic chloride solutions,” Journal of The Electrochemical Society, vol. 119, pp. 999–1009, 1972.
[70]  H. Ashassi-Sorkhabi and S. A. Nabavi-Amri, “Corrosion inhibition of carbon steel in petroleum/water mixtures by N-containing compounds,” Acta Chimica Slovenica, vol. 47, no. 4, pp. 507–517, 2000.
[71]  P. C. Okafor, M. E. Ikpi, I. E. Uwah, E. E. Ebenso, U. J. Ekpe, and S. A. Umoren, “Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media,” Corrosion Science, vol. 50, no. 8, pp. 2310–2317, 2008.
[72]  I. B. Obot and N. O. Obi-Egbedi, “Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation,” Corrosion Science, vol. 52, no. 1, pp. 198–204, 2010.
[73]  D. W. Shoesmith, Metals Handbook, vol. 13, 9th edition, 1987.
[74]  A. Fragnani and G. Trabanelli, “Influence of organic additives on the corrosion of iron-based amorphous alloys in dilute sulfuric acid solution,” Corrosion, vol. 55, pp. 653–660, 1999.
[75]  A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003.
[76]  N. Hackerman, E. S. Snavely Jr., and J. S. Payne Jr., “Effects of anions on corrosion inhibition by organic compounds,” Journal of The Electrochemical Society, vol. 113, pp. 677–981, 1966.
[77]  X. Li, S. Deng, H. Fu, and G. Mu, “Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 3, pp. 620–634, 2009.
[78]  A. K. Satpati and P. V. Ravindran, “Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media,” Materials Chemistry and Physics, vol. 109, pp. 352–359, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133