Stromal vascular fraction (SVF) combined with platelet-rich plasma (PRP) is commonly used in preclinical and clinical osteoarthritis as well as articular cartilage injury treatment. However, this therapy has not carefully evaluated the safety and the efficacy. This research aims to assess the safety and the efficacy of SVF combined with PRP transplantation. Ten samples of SVFs and PRPs from donors were used in this research. About safety, we evaluate the expression of some genes related to tumor formation such as Oct-4, Nanog, SSEA3, and SSEA4 by RT-PCR, flow cytometry, and tumor formation when injected in NOD/SCID mice. About efficacy, SVF was injected with PRP into murine joint that caused joint failure. The results showed that SVFs are negative with Oct-4, Nanog, SSEA-3, and SSEA-4, as well as they cannot cause tumors in mice. SVFs combined with PRP can improve the joint regeneration in mice. These results proved that SVFs combined with PRP transplantation is a promising therapy for articular cartilage injury treatment. 1. Introduction Stem cell therapy is considered as a promising therapy for degenerative disease treatment, especially articular cartilage injury as well as osteoarthritis. Osteoarthritis was treated by stem cell transplantation for a few years ago. Stem cells from various sources were used to treat this disease. However, the mesenchymal stem cells (MSCs) are considered as most suitable candidates. MSCs are multipotential cells capable of differentiation into bone, cartilage, fat, and some other cells [1]. MSCs could be isolated from bone marrow [2], adipose tissue [3], cord blood [4], banked umbilical cord blood [5], umbilical cord [6], Wharton’s jelly [7], placenta [8], and pulp [9]. However, MSCs from bone marrow [10–12] and from adipose tissue [13–15] are two common stem cell sources for treating cartilage degeneration. Cartilage degeneration or cartilage injury is a common clinical problem and easily leads to osteoarthritis. Osteoarthritis is a chronic degenerative process characterized by the degeneration of cartilage, bone bud formation, cartilage reorganization, joint erosion, and loss of joint function [16]. Currently, cartilage injury was treated primarily with drugs [17–20] or injection of hyaluronic acid [21, 22] to reduce the symptoms, pain, and inflammation control. However, these therapies’s efficiencies were limited and often failed to prevent the degeneration of the joints [23]. MSCs from adipose tissue, also known as stem cells isolated from fat tissue (adipose-derived stem cells—ADSCs), are a suitable source of
References
[1]
D. J. Prockop, “Marrow stromal cells as stem cells for non-hematopoietic tissues,” Science, vol. 276, pp. 71–74, 1997.
[2]
S. M. Phadnis, M. V. Joglekar, M. P. Dalvi et al., “Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo,” Cytotherapy, vol. 13, no. 3, pp. 279–293, 2011.
[3]
B. T. Estes, B. O. Diekman, J. M. Gimble, and F. Guilak, “Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype,” Nature Protocols, vol. 5, no. 7, pp. 1294–1311, 2010.
[4]
A. Reinisch, C. Bartmann, E. Rohde et al., “Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application,” Regenerative Medicine, vol. 2, no. 4, pp. 371–382, 2007.
[5]
P. V. Phuc, T. H. Nhung, D. T. T. Loan, D. C. Chung, and P. K. Ngoc, “Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells,” In Vitro Cellular and Developmental Biology—Animal, vol. 47, no. 1, pp. 54–63, 2011.
[6]
V. A. Farias, J. L. Linares-Fernández, J. L. Pe?alver et al., “Human umbilical cord stromal stem cell express CD10 and exert contractile properties,” Placenta, vol. 32, pp. 86–95, 2011.
[7]
J. Peng, Y. Wang, L. Zhang et al., “Humanumbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro,” Brain Research Bulletin, vol. 84, pp. 235–243, 2011.
[8]
G. A. Pilz, C. Ulrich, M. Ruh et al., “Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells,” Stem Cells and Development, vol. 20, no. 4, pp. 635–646, 2011.
[9]
L. Spath, V. Rotilio, M. Alessandrini et al., “Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials,” Journal of Cellular and Molecular Medicine, vol. 14, pp. 1635–1644, 2010.
[10]
A. M. Lubis and V. K. Lubis, “Adult bone marrow stem cells in cartilage therapy,” Acta Medica Indonesiana, vol. 44, pp. 62–68, 2012.
[11]
C. Kasemkijwattana, S. Hongeng, S. Kesprayura, V. Rungsinaporn, K. Chaipinyo, and K. Chansiri, “Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report,” Journal of the Medical Association of Thailand, vol. 94, no. 3, pp. 395–400, 2011.
[12]
F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients,” International Journal of Rheumatic Diseases, vol. 14, no. 2, pp. 211–215, 2011.
[13]
D. Minteer, K. G. Marra, and J. P. Rubin, “Adipose-derived mesenchymal stem cells: biology and potential applications,” Advances in Biochemical Engineering/Biotechnology. In press.
[14]
D. D. Frisbie, J. D. Kisiday, C. E. Kawcak, N. M. Werpy, and C. W. McIlwraith, “Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis,” Journal of Orthopaedic Research, vol. 27, no. 12, pp. 1675–1680, 2009.
[15]
J. Pak, “Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series,” Journal of Medical Case Reports, vol. 5, p. 296, 2011.
[16]
H. A. Wieland, M. Michaelis, B. J. Kirschbaum, and K. A. Rudolphi, “Osteoarthritis—an untreatable disease?” Nature Reviews Drug Discovery, vol. 4, pp. 331–344, 2005.
[17]
J. A. Buckwalter, C. Saltzman, and T. Brown, “The impact of osteoarthritis: implications for research,” Clinical Orthopaedics and Related Research, vol. 427, pp. S6–S15, 2004.
[18]
M. Dougados, “The role of anti-inflammatory drugs in the treatment of osteoarthritis: a European viewpoint,” Clinical and Experimental Rheumatology, vol. 19, pp. S9–S14, 2001.
[19]
T. Pincus, G. G. Koch, T. Sokka et al., “A randomized, double-blind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee,” Arthritis & Rheumatism, vol. 44, pp. 1587–1598, 2001.
[20]
S. Eyigor, S. Hepguler, M. Sezak, F. ?ztop, and K. Capaci, “Effects of intra-articular hyaluronic acid and corticosteroid therapies on articular cartilage in experimental severe osteoarthritis,” Clinical and Experimental Rheumatology, vol. 24, no. 6, p. 724, 2006.
[21]
T. Spaková, J. Rosocha, M. Lacko, D. Harvanová, and A. Gharaibeh, “Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid,” American Journal of Physical Medicine and Rehabilitation, vol. 91, no. 5, pp. 411–417, 2012.
[22]
V. Karatosun, B. Unver, A. Ozden, Z. Ozay, and I. Gunal, “Intra-articular hyaluronic acid compared to exercise therapy in osteoarthritis of the ankle. A prospective randomized trial with long-term follow-up,” Clinical and Experimental Rheumatology, vol. 26, no. 2, pp. 288–294, 2008.
[23]
J. P. Schroeppel, J. D. Crist, H. C. Anderson, and J. Wang, “Molecular regulation of articular chondrocyte function and its significance in osteoarthritis,” Histology and Histopathology, vol. 26, pp. 377–394, 2011.
[24]
H. J. Harn, S. Z. Lin, S. H. Hung et al., “Adipose-derived stem cells can abrogate chemical-induced liver fibrosis and facilitate recovery of liver function,” Cell Transplantation. In press.
[25]
J. H. Gu, Y. H. Ji, E. S. Dhong, D. H. Kim, and E. S. Yoon, “Transplantation of adipose derived stem cells for peripheral nerve regeneration in sciatic nerve defects of the rat,” Current Stem Cell Research & Therapy, vol. 7, no. 5, pp. 347–355, 2012.
[26]
N. Scuderi, S. Ceccarelli, M. G. Onesti et al., “Human adipose derived stem cells for cell based therapies in the treatment of systemic sclerosis,” Cell Transplantation. In press.
[27]
M. Mazo, S. Hernández, J. J. Gavira et al., “Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical swine model of myocardial infarction,” Cell Transplantation. In press.
[28]
R. Pe?anha, L. L. Bagno, M. B. Ribeiro et al., “Adipose-derived stem-cell treatment of skeletal muscle injury,” The Journal of Bone & Joint Surgery, vol. 94, pp. 609–617, 2012.
[29]
J. Xiao, C. Zhang, Y. Zhang et al., “Transplantation of adipose-derived mesenchymal stem cells into a murine model of passive chronic immune thrombocytopenia,” Transfusion, vol. 52, no. 12, pp. 2551–2558, 2012.
[30]
J. J. Yang, X. Yang, Z. Q. Liu et al., “Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infarcted myocardium in rabbits,” The Tohoku Journal of Experimental Medicine, vol. 226, pp. 231–241, 2012.
[31]
L. L. Black, J. Gaynor, C. Adams et al., “Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs,” Veterinary Therapeutics, vol. 9, no. 3, pp. 192–200, 2008.
[32]
L. L. Black, J. Gaynor, D. Gahring et al., “Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial,” Veterinary Therapeutics, vol. 8, no. 4, pp. 272–284, 2007.
[33]
A. Guercio, P. Di Marco, S. Casella et al., “Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints,” Cell Biology International, vol. 36, pp. 189–194, 2012.
[34]
F. S. Toghraie, N. Chenari, M. A. Gholipour et al., “Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit,” Knee, vol. 18, no. 2, pp. 71–75, 2011.
[35]
J. M. Lee and G. I. Im, “SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat,” Biomaterials, vol. 33, pp. 2016–2024, 2012.
[36]
M. C. ter Huurne, P. L. E. M. van Lent, A. B. Blom, et al., “A single injection of adipose-derived stem cells protects against cartilage damage and lowers synovial activation in experimental osteoarthritis,” Arthritis & Rheumatism, vol. 63, p. 1784, 2011.
[37]
J. M. Gimble and F. Guilak, “Differentiation potential of adipose derived adult stem cell (ADAS) cells,” Current Topics in Developmental Biology, vol. 58, pp. 137–160, 2003.
[38]
J. M. Murphy, D. J. Fink, E. B. Hunziker, and F. P. Barry, “Stem cell therapy in a caprine model of osteoarthritis,” Arthritis & Rheumatism, vol. 48, pp. 3464–3474, 2003.
[39]
P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[40]
Y. D. C. Halvorsen, D. Franklin, A. L. Bond et al., “Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells,” Tissue Engineering, vol. 7, no. 6, pp. 729–741, 2001.
[41]
H. Mizuno, P. A. Zuk, M. Zhu, H. P. Lorenz, P. Benhaim, and M. H. Hedrick, “Myogenic differentiation by human processed lipoaspirate cells,” Plastic and Reconstructive Surgery, vol. 109, pp. 199–209, 2002.
[42]
W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005.
[43]
S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006.
[44]
K. M. Safford, K. C. Hicok, S. D. Safford et al., “Neurogenic differentiation of murine and human adipose-derived stromal cells,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 371–379, 2002.
[45]
R. Izadpanah, C. Trygg, B. Patel et al., “Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue,” Journal of Cellular Biochemistry, vol. 99, no. 5, pp. 1285–1297, 2006.
[46]
A. N. Patel, J. Yochman, V. Vargas, and D. A. Bull, “Putative population of adipose derived stem cells isolated from mediastinal tissue during cardiac surgery,” Cell Transplantation. In press.
[47]
G. Musumeci, D. Lo Furno, C. Loreto et al., “Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin,” Experimental Biology and Medicine, vol. 236, pp. 1333–1341, 2011.
[48]
V. Zachar, J. G. Rasmussen, and T. Fink, “Isolation and growth of adipose tissue-derived stem cells,” Methods in Molecular Biology, vol. 698, pp. 37–49, 2011.
[49]
C. K. Rebelatto, A. M. Aguiar, M. P. Moret?o et al., “Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue,” Experimental Biology and Medicine, vol. 233, no. 7, pp. 901–913, 2008.
[50]
I. S. Blande, V. Bassaneze, C. Lavini-Ramos et al., “Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate,” Transfusion, vol. 49, no. 12, pp. 2680–2685, 2009.
[51]
C. Dromard, P. Bourin, M. André, S. De Barros, L. Casteilla, and V. Planat-Benard, “Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres,” Experimental Cell Research, vol. 317, no. 6, pp. 770–780, 2011.
[52]
D. T. B. Shih, J. C. Chen, W. Y. Chen, Y. P. Kuo, C. Y. Su, and T. Burnouf, “Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate,” Transfusion, vol. 51, no. 4, pp. 770–778, 2011.
[53]
M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[54]
H. Niwa, J. Miyazaki, and A. G. Smith, “Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells,” Nature Genetics, vol. 24, pp. 372–376, 2000.
[55]
K. Mitsui, Y. Tokuzawa, H. Itoh et al., “The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells,” Cell, vol. 113, no. 5, pp. 631–642, 2003.
[56]
K. Hochedlinger, Y. Yamada, C. Beard, and R. Jaenisch, “Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues,” Cell, vol. 121, no. 3, pp. 465–477, 2005.
[57]
S. H. Chiou, C. C. Yu, C. Y. Huang et al., “Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma,” Clinical Cancer Research, vol. 14, no. 13, pp. 4085–4095, 2008.
[58]
Y. C. Chen, H. S. Hsu, Y. W. Chen et al., “Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells,” PLoS One, vol. 3, article e2637, 2008.
[59]
C. Liu, X. Cao, Y. Zhang et al., “Co-expression of Oct-4 and Nestin in human breast cancers,” Molecular Biology Reports, vol. 39, pp. 5875–5881, 2012.
[60]
Y. Guo, S. Liu, P. Wang et al., “Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas,” Histopathology, vol. 59, pp. 763–775, 2011.
[61]
J. T. Oliveira, L. S. Gardel, T. Rada, L. Martins, M. E. Gomes, and R. L. Reis, “Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects,” Journal of Orthopaedic Research, vol. 28, no. 9, pp. 1193–1199, 2010.
[62]
J. L. Dragoo, G. Carlson, F. McCormick et al., “Healing full-thickness cartilage defects using adipose-derived stem cells,” Tissue Engineering, vol. 13, no. 7, pp. 1615–1621, 2007.
[63]
P. F. Caimi, J. Reese, Z. Lee, and H. M. Lazarus, “Emerging therapeutic approaches for multipotent mesenchymal stromal cells,” Current Opinion in Hematology, vol. 17, no. 6, pp. 505–513, 2010.
[64]
N. G. Singer and A. I. Caplan, “Mesenchymal stem cells: mechanisms of inflammation,” Annual Review of Pathology, vol. 6, pp. 457–478, 2011.
[65]
O. Ringdén, M. Uzunel, I. Rasmusson et al., “Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease,” Transplantation, vol. 81, no. 10, pp. 1390–1397, 2006.
[66]
B. Fang, Y. Song, L. Liao, Y. Zhang, and R. C. Zhao, “Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease,” Transplantation Proceedings, vol. 39, no. 10, pp. 3358–3362, 2007.
[67]
B. Fang, Y. Song, R. C. Zhao, Q. Han, and Q. Lin, “Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis,” Transplantation Proceedings, vol. 39, no. 5, pp. 1710–1713, 2007.
[68]
P. Borrione, A. D. Gianfrancesco, M. T. Pereira, and F. Pigozzi, “Platelet-rich plasma in muscle healing,” American Journal of Physical Medicine & Rehabilitation, vol. 89, pp. 854–861, 2010.
[69]
W. Yu, J. Wang, and J. Yin, “Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury,” International Journal of Neuroscience, vol. 121, pp. 176–180, 2011.
[70]
S. Sampson, M. Reed, H. Silvers, M. Meng, and B. Mandelbaum, “Injection of platelet-rich plasma in patients with primary and secondary knee osteoarthritis: a pilot study,” American Journal of Physical Medicine & Rehabilitation, vol. 89, no. 12, pp. 961–969, 2010.
[71]
G. Filardo, E. Kon, R. Buda et al., “Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, no. 4, pp. 528–535, 2011.