全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low Temperature Dielectric Relaxation in System

DOI: 10.1155/2013/857201

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on dielectric properties of polycrystalline (BBTF) ceramic system ( , 0.06, 0.08, 0.10, 0.12, and 0.16). The materials were synthesized by solid state ceramic route. Solid solution formation has been confirmed by powder X-ray diffraction for compositions with . Crystal structure is tetragonal for and cubic for . Microstructures show that the average grain size is less than one micrometer (1?μ). Dielectric behavior has been studied as a function of temperature (100?K–400?K) and frequency. Composition with exhibits diffuse phase transition. Compositions with show ferroelectric relaxor behavior. This shows that diffuse ferroelectric transition behavior changes to relaxor type ferroelectric transition with increasing . Plots of dielectric loss (D) versus temperature shows broad maxima which shift to high temperature with increasing frequency, dispersion in dielectric loss decreases with below peak maxima and increases above. It may be attributed to Maxwell Wagner type relaxation process for low (~0.02) and relaxation of nanopolar regions for . 1. Introduction Compositions based on BaTiO3 (BTO), a well-known ferroelectric material, show significant change in the dielectric behavior near Curie temperature. Its properties are modified by a wide variety of substitutions, possible either at Ba or Ti sites independently or simultaneously. Extensive research work on the effect of isovalent as well as offvalent substitutions on the transition temperature and the dielectric properties of BaTiO3 has been done during the last few decades [1–3]. The substitution of trivalent ions either at A or at B sites causes charge imbalance and requires creation of vacancies in A or B or oxygen sublattice or generation of electrons or holes to maintain the electrical charge neutrality. It has been reported that for small concentration of La3+ substitution, the charge neutrality is maintained by electronic compensation in accordance with the formula [1], and for large concentration, excess donor charge on La3+ ions is compensated by Ti vacancies as represented by the formula [4]. Substitution of Bi3+ at Ba2+ site in small concentration is reported to exhibit positive temperature coefficient of resistance (PTCR) [5]. Diffuse phase transition has been observed for large concentration Bi3+ [6]. Possibility of creation of defects is very much reduced by valence compensated substitutions either on A site or on B site or on both sites simultaneously. For example, solid solutions of BaTiO3-NaNbO3 and Zr-doped BaTiO3 have charge compensation internally. These systems have been

References

[1]  B. Jaffe, W. R. Cook Jr., and H. Jaffe, in Piezoelectric Ceramics, p. 201, Academic Press, New York, NY, USA, 1971.
[2]  R. E. Newnham, “Structure-property relations in ceramic capacitors,” Journal of Materials Education, vol. 5, no. 6, pp. 941–982, 1983.
[3]  G. Goodman, “Ceramic capacitor materials,” in Ceramic Materials for Electronics, R. C. Buchanan, Ed., pp. 79–138, Marcel Dekker, New York, NY, USA, 1986.
[4]  G. H. Jonker and E. E. Havinga, “The influence of foreign ions on the crystal lattice of barium titanate,” Materials Research Bulletin, vol. 17, no. 3, pp. 345–350, 1982.
[5]  O. Saburi, “Properties of semiconductive barium titanates,” Journal of the Physical Society of Japan, vol. 14, no. 9, pp. 1159–1174, 1959.
[6]  M. Deri, “Period. Polytech,” Chemical Engineering, vol. 4, p. 307, 1960.
[7]  T. Hungría, M. Algueró, and A. Castro, “Synthesis of nanosized solid solution by mechanochemical activation, processing of ceramics, and phase transitions,” Chemistry of Materials, vol. 18, no. 22, pp. 5370–5376, 2006.
[8]  M. Mahesh Kumar, K. Srinivas, and S. V. Suryanarayana, “Relaxor behavior in BaTiO3,” Applied Physics Letters, vol. 76, no. 10, pp. 1330–1332, 2000.
[9]  I. V. Kityk, N. AlZayed, G. Lakshminarayana, A. Wojciechowski, and K. J. Plucinski, “Photoinduced spectra for magneto electric nanocomposites,” Specrochimica Acta, A, vol. 97, pp. 695–698, 2012.
[10]  G. Li, Y. Uesu, and K. Kohn, “Structural characterization of the complex perovskites ,” Journal of Solid State Chemistry, vol. 164, no. 1, pp. 98–105, 2002.
[11]  O. Parkash, C. Durga Prasad, and D. Kumar, “Dielectric properties of the system ,” Journal of Materials Science, vol. 26, no. 22, pp. 6063–6067, 1991.
[12]  A. I. Kashilinski, V. I. Chechernikov, and Yu. N. Venaetsev, Soviet Physics, Solid State, vol. 8, p. 2074, 1967.
[13]  F. Prihor, A. Ianculescu, L. Mitoseriu et al., “Functional properties of the solid solutions,” Ferroelectrics, vol. 391, no. 1, pp. 76–82, 2009.
[14]  M. Mahesh Kumar, M. B. Suresh, S. V. Suryanarayana, G. S. Kumar, and T. Bhimasankaram, “Dielectric relaxation in ,” Journal of Applied Physics, vol. 84, no. 12, pp. 6811–6814, 1998.
[15]  M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, “Structure property relations in solid solutions,” Journal of Applied Physics, vol. 87, no. 2, pp. 855–862, 2000.
[16]  F. Z. Qian, J. S. Jiang, D. M. Jiang, W. G. Zhang, and J. H. Liu, “Multiferroic properties of nanoparticles,” Journal of Physics D, vol. 43, no. 2, Article ID 025403, 2010.
[17]  A. Kumar, R. K. Dwivedi, and V. Pal, “Dielectric behavior and impedance spectroscopy of system,” Advanced Materials Research, vol. 585, pp. 190–194, 2012.
[18]  L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76, no. 3-4, pp. 241–267, 1987.
[19]  G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compound,” Soviet Physics, Solid State, vol. 1, pp. 1429–1437, 1959.
[20]  K. Uchino and S. Nomura, “Critical exponents of the dielectric constants in diffused-phase-transition crystals,” Ferroelectrics Letters, vol. 44, no. 1, pp. 55–61, 1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133