An ac conductivity as well as dielectric relaxation property of La2NiO4.1 is reported in the temperature range of 77?K–130?K and in the frequency range of 20?Hz–1?MHz. Complex impedance plane plots show that the relaxation (conduction) mechanism in this material is purely a bulk effect arising from the semiconductive grain. The relaxation mechanism has been discussed in the frame of electric modulus spectra. The scaling behavior of the modulus suggests that the relaxation mechanism describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with the activation energy of ~0.09?eV. The frequency-dependent electrical data are also analyzed in the frame of ac conductivity formalism. The ac conductivity has been found to follow a power-law behavior at a limited temperature and frequency region where Anderson localization plays a significant role in the transport mechanism for La2NiO4.1. 1. Introduction Perovskite oxides with high dielectric constant play an important role in microelectronics [1] and have been used as memory devices and capacitors. In the literature, the dielectric relaxation with extremely high permittivity has been reported in many materials, in which the contribution of conduction carriers to dielectric polarization may play an important role. However, the explanation of this phenomenon is controversial based on different models [2, 3]. The electron localized on an ion can cause displacements of neighboring ions from their positions in the crystal lattice. The quasi-particle formed by an electron and corresponding lattice displacements is called polaron [4, 5]. Crystal chemical considerations indicate that among the ternary transition metal oxides of the type A2BO4, only La2NiO4 should be stable in the K2NiF4 structure [6–8]. The natures and properties of La2NiO4 are highly sensitive to the content of excess oxygen. In fact, La2NiO4+δ exhibits the metal-insulator transition [8]. Although La2NiO4+δ remains semiconducting nature up to , hole doping due to excess oxygen induces increasing structural distortion and changes electronic structures which modify the band gap width [9]. La2NiO4+δ exhibits semiconducting behavior at low temperatures with thermally activated or variable range hopping-type conductivity [10, 11]. The previous experimental results suggest a high possibility that the major carrier at low temperature in La2NiO4+δ is a polaron [10, 11]. However, the details of the transport kinetics are still unknown. Although there are many ways of
References
[1]
R. J. Cava, “Dielectric materials for applications in microwaves communications,” Journal of Materials Chemistry, vol. 11, no. 1, pp. 54–62, 2001.
[2]
S. Komine, “Dielectric relaxation study on Ce0.9 Gd0.1 O1.95 ceramics,” Physica B, vol. 392, no. 1-2, pp. 348–352, 2007.
[3]
E. Iguchi and K. J. Lee, “Dielectric relaxations in SrTiO3 doped with La2O3 and MnO2 at low temperatures,” Journal of Materials Science, vol. 28, no. 21, pp. 5809–5813, 1993.
[4]
E. Iguchi, H. Satoh, H. Nakatsugawa, and F. Munakata, “Correlation between hopping conduction and transferred exchange interaction in La2NiO4+δ below 300?K,” Physica B, vol. 270, no. 3-4, pp. 332–340, 1999.
[5]
C. N. R. Rao, D. J. Buttrey, N. Otsuka et al., “Crystal structure and semiconductor-metal transition of the quasi-two-dimensional transition metal oxide, La2NiO4,” Journal of Solid State Chemistry, vol. 51, no. 2, pp. 266–269, 1984.
[6]
K. K. Singh, P. Ganguly, and J. B. Goodenough, “Unusual effects of anisotropic bonding in Cu(II) and Ni(II) oxides with K2NiF4 structure,” Journal of Solid State Chemistry, vol. 52, no. 3, pp. 254–273, 1984.
[7]
M. Sayer and P. Odier, “Electrical properties and stoichiometry in La2NiO4,” Journal of Solid State Chemistry, vol. 67, no. 1, pp. 26–36, 1987.
[8]
D. C. Johnston, J. P. Stokes, D. P. Goshorn, and J. T. Lewandowski, “Influence of oxygen defects on the physical properties of La2CuO4-y,” Physical Review B, vol. 36, no. 7, pp. 4007–4010, 1987.
[9]
Th. Strangfeld, K. Westerholt, and H. Bach, “Electronic charge transport and magnetism of the system (La1-xSrx)2NiO4+δ,” Physica C, vol. 183, no. 1–3, pp. 1–10, 1991.
[10]
T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, and Y. Tokura, “Optical spectroscopy of the charge-ordering transition in La1.6Sr0.33NiO4,” Physical Review B, vol. 54, no. 20, pp. R14230–R14233, 1996.
[11]
J. M. Bassat, J. P. Loup, and P. Odier, “Progressive change with T from hopping to random phase propagation in La2-xNiO4-δ,” Journal of Physics Condensed Matter, vol. 6, no. 40, pp. 8285–8293, 1994.
[12]
A. Mansingh, J. M. Reyes, and M. Sayer, “Dielectric behaviour in a vanadium phosphate glass,” Journal of Non-Crystalline Solids, vol. 7, no. 1, pp. 12–22, 1972.
[13]
A. Seeger, P. Lunkenheimer, J. Hemberger et al., “Charge carrier localization in La1-xSrxMnO3 investigated by ac conductivity measurements,” Journal of Physics Condensed Matter, vol. 11, no. 16, pp. 3273–3290, 1999.
[14]
H. Jhans, D. Kim, R. J. Rasmussen, and J. M. Honig, “ac-conductivity measurements on La2NiO4+δ,” Physical Review B, vol. 54, no. 16, pp. 11224–11229, 1996.
[15]
W. H. Jung, J. H. Sohn, J. H. Lee, J. H. Sohn, M. S. Park, and S. H. Cho, “Alternating-current electrical properties of CaMnO3 below the Neel temperature,” Journal of the American Ceramic Society, vol. 83, no. 4, pp. 797–801, 2000.
[16]
C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, and A. Loidl, “Dielectric spectra and electrical conduction in Fe-doped SrTiO3,” Physical Review B, vol. 61, no. 6, pp. 3922–3926, 2000.
[17]
G. Chern, W. K. Hsieh, M. F. Tai, and K. S. Hsung, “High dielectric permittivity and hole-doping effect in La1-xSrxFeO3,” Physical Review B, vol. 58, no. 3, pp. 1252–1260, 1998.
[18]
A. Karmakar, S. Majumdar, and S. Giri, “Polaron relaxation and hopping conductivity in LaMn1-xFexO3,” Physical Review B, vol. 79, no. 9, pp. 094406–094413, 2009.
[19]
M. Ram, “A.c. Conductivity and dielectric properties of LiNi3/5Cu2/5VO4 ceramics,” Physica B, vol. 405, no. 5, pp. 1359–1361, 2010.
[20]
Y. Q. Lin, Y. J. Wu, X. M. Chen, S. P. Gu, J. Tong, and S. Guan, “Dielectric relaxation mechanisms of BiMn2O5 ceramics,” Journal of Applied Physics, vol. 105, no. 5, Article ID 054109, 2009.
[21]
R. S. Kumar and K. Hariharan, “AC conductivity and electrical relaxation studies on 10CuI-60AgI-30V2O5 glasses,” Materials Chemistry and Physics, vol. 60, no. 1, pp. 28–38, 1999.
[22]
P. K. Bajpai and K. N. Singh, “Dielectric relaxation and ac conductivity study of Ba(Sr1/3Nb2/3)O3,” Physica B, vol. 406, no. 6-7, pp. 1226–1232, 2011.
[23]
P. Kumar, B. P. Singh, T. P. Sinha, and N. K. Singh, “AC conductivity and dielectric relaxation in Ba(Sm1/2Nb1/2)O3 ceramic,” Physica B, vol. 406, no. 2, pp. 139–143, 2011.
[24]
H. Mahamoud, B. Louati, F. Hlel, and K. Guidara, “Impedance and modulus analysis of the (Na0.6Ag0.4)2PbP2O7 compound,” Journal of Alloys and Compounds, vol. 509, no. 20, pp. 6083–6089, 2011.
[25]
D. K. Mahato, A. Dutta, and T. P. Sinha, “Impedance spectroscopy analysis of double perovskite Ho2NiTiO6,” Journal of Materials Science, vol. 45, no. 24, pp. 6757–6762, 2010.
[26]
W. H. Jung, “Investigations of the charge transport properties in (LaMn)0.956O3 at low temperatures,” Journal of Physics Condensed Matter, vol. 18, no. 29, pp. 6691–6698, 2006.
[27]
M. Idrees, M. Nadeem, and M. M. Hassan, “Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy,” Journal of Physics D, vol. 43, no. 15, Article ID 155401, 2010.
[28]
A. Dutta and T. P. Sinha, “Impedance spectroscopy study of BaMb1/3Nb2/3O3: frequency and time domain analyses,” Physica B, vol. 405, no. 6, pp. 1475–1479, 2010.
[29]
S. Saha and T. P. Sinha, “Low-temperature scaling behavior of BaFe0.5Nb0.5O3,” Physical Review B, vol. 65, no. 13, Article ID 134103, pp. 1341031–1341037, 2002.
[30]
A. Levstik, C. Filipi?, V. Bobnar, S. Drnov?ek, J. Holc, and M. Kosec, “Polaron conductivity mechanism in 0.5Pb(Zr0.575Ti0.425)O30.5Pb(Fe2/3W1/3)O3,” Physica B, vol. 405, no. 20, pp. 4271–4273, 2010.
[31]
S. R. Elliott, “A.c. conduction in amorphous chalcogenide and pnictide semiconductors,” Advances in Physics, vol. 36, no. 2, pp. 135–218, 1987.
[32]
W. K. Lee, J. F. Liu, and A. S. Nowick, “Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality,” Physical Review Letters, vol. 67, no. 12, pp. 1559–1561, 1991.
[33]
A. S. Nowick, A. V. Vaysleyb, and B. S. Lim, “Further evidence for a “second universality” in alternating-current conductivity relaxation,” Journal of Applied Physics, vol. 76, no. 7, pp. 4429–4431, 1994.
[34]
A. R. Long, “Frequency—dependent loss in amorphous semiconductor,” Advances in Physics, vol. V 31, no. 5, pp. 553–637, 1982.