Chitosan has a very wide application range in different parts of life such as in biomedical and antimicrobial areas. In recent years the self-healing property of chitosan becomes more of an issue. In the study chitosan was used to obtain a self-healing composite material. An epoxy dye was converted to a self-healing coating. Different types of samples were prepared by coating the glass substrates with a polymer matrix reinforced with various amounts of chitosan. The samples were characterized by fourier transform Infrared (FTIR) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). In addition, self-healing test was applied as a primary objective of this research. In this respect, the samples were scratched with a very thin pin, and they were analyzed by SEM periodically. It was observed that chitosan-reinforced dyes showed self-healing property. Mechanism of the self-healing process was also scrutinized. 1. Introduction A self-healing material is a material that has the built-in ability to partially repair damage occurring during its service life time. Self-healing is the ability of a material to restore mechanical properties, which were earlier perturbed by a plastic deformation or failure involving cracks and voids. Usually, certain properties of any engineering material such as metals, polymers, ceramics, cementitious, and elastomeric and fibre-reinforced composite materials degrade over time due to environmental conditions or fatigue or due to damage incurred during operation. This damage is often on a microscopic scale, requiring periodic inspection and repair to avoid them growing and causing failure [1]. Self-healing materials address this degradation through the inclusion of an “active” phase that responds to the microdamage by initiating a repair mechanism, and several mechanisms have been proposed for the engineering materials. Investigation of possible self-healing mechanisms is an important emerging field of nanotechnology [2]. The inspiration of self-healing materials comes from biological systems, which have the ability to heal after being wounded. Initiation of cracks or other types of damage on a microscopic level changed thermal, electrical, and acoustical properties and eventually led to whole scale failure of the material. Usually, cracks cannot be mended by hand because it is hard/difficult to detected. A material that can intrinsically correct damage can lower production costs of a number of different industrial processes, can reduce the inefficiency over time caused by degradation, and can prevent costs
References
[1]
S. van der Zwaag, Ed., Self-Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, vol. 100, Springer, Dordrecht, The Netherlands, 2007.
[2]
P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Weinheim, Germany, 2003.
[3]
Y. C. Yuan, T. Yin, M. Z. Rong, and M. Q. Zhang, “Self healing in polymers and polymer composites. Concepts, realization and outlook: a review,” Express Polymer Letters, vol. 2, no. 4, pp. 238–250, 2008.
[4]
M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, “Self-healing materials,” Advanced Materials, vol. 22, no. 47, pp. 5424–5430, 2010.
[5]
S. R. White, N. R. Sottos, P. H. Geubelle et al., “Autonomic healing of polymer composites,” Nature, vol. 409, pp. 794–797, 2001.
[6]
M. M. Caruso, D. A. Delafuente, V. Ho, N. R. Sottos, J. S. Moore, and S. R. White, “Solvent-promoted self-healing epoxy materials,” Macromolecules, vol. 40, no. 25, pp. 8830–8832, 2007.
[7]
R. S. Trask, G. J. Williams, and I. P. Bond, “Bioinspired self-healing of advanced composite structures using hollow glass fibres,” Journal of the Royal Society Interface, vol. 4, no. 13, pp. 363–371, 2007.
[8]
N. P. Bansal, Handbook of Ceramic Composites, Kluwer Academic Publisher, Norwell, Mass, USA, 2005.
[9]
W. K. Liu, E. G. Karpov, and H. S. Park, Nano Mechanics and Materials, John Wiley & Sons, New York, NY, USA, 2006.
[10]
E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003.
[11]
V. K. Mourya and N. N. Inamdar, “Chitosan-modifications and applications: opportunities galore,” Reactive and Functional Polymers, vol. 68, no. 6, pp. 1013–1051, 2008.
[12]
C. Peniche, W. Argüelles-Monal, and F. M. Goycoolea, “Chitin and Chitosan: major sources, properties and applications,” in Monomers, Polymers and Composites from Renewable Resources, pp. 517–542, Elsevier, Amsterdam, The Netherlands, 2008.
[13]
R. S. Trask, H. R. Williams, and I. P. Bond, “Self-healing polymer composites: mimicking nature to enhance performance,” Bioinspiration and Biomimetics, vol. 2, no. 1, pp. P1–P9, 2007.
[14]
B. Ghosh and M. W. Urban, “Self-repairing oxetane-substituted chitosan polyurethane networks,” Science, vol. 323, no. 5920, pp. 1458–1460, 2009.
[15]
Y. H. Kim and R. P. Wool, “A theory of healing at a polymer-polymer interface,” Macromolecules, vol. 16, no. 7, pp. 1115–1120, 1983.
[16]
Y. Boonsongrit, B. W. Mueller, and A. Mitrevej, “Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 388–395, 2008.
[17]
Z. Osman and A. K. Arof, “FTIR studies of chitosan acetate based polymer electrolytes,” Electrochimica Acta, vol. 48, no. 8, pp. 993–999, 2003.
[18]
M. R. Kesslera, N. R. Sottosc, and S. R. Whiteb, “Self-healing structural composite materials,” Composites A, no. 34, pp. 743–753, 2003.
[19]
D. Y. Wu, S. Meure, and D. Solomon, “Self-healing polymeric materials: a review of recent developments,” Progress in Polymer Science, vol. 33, no. 5, pp. 479–522, 2008.
[20]
R. P. Wool, “Self-healing materials: a review,” Soft Matter, vol. 4, no. 3, pp. 400–418, 2008.
[21]
R. P. Wool and K. M. O’Connor, “A theory of crack healing in polymers,” Journal of Applied Physics, vol. 52, pp. 5953–5963, 1981.
[22]
H. H. Kausch and K. Jud, “Molecular aspects of crack formation and healing in glassy polymers,” Plastics and Rubber Processing and Applications, vol. 2, pp. 265–268, 1982.
[23]
P. R. Wool and K. M. O’Connor, “Craze healing in polymer glasses,” Polymer Engineering & Science, vol. 21, pp. 970–977, 1981.
[24]
O. J. McGarel and R. P. Wool, “Craze growth and healing in polystyrene,” Journal of Polymer Science B: Polymer Physics, vol. 25, no. 12, pp. 2541–2560, 1987.
[25]
H. Jin, C. L. Mangun, D. S. Stradley, J. S. Moore, N. R. Sottos, and S. R. White, “Self-healing thermoset using encapsulated epoxy-amine healing chemistry,” Polymer, no. 53, pp. 581–587, 2012.
[26]
M. L. Zheludkevich, J. Freire TCSR, S. C. M. Fernandes et al., “Self-healing protective coatings with ‘‘green’’ chitosan based pre-layer reservoir of corrosion inhibitor,” Journal of Materials Chemistry, vol. 21, pp. 4805–4812, 2011.