全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigations of Different Phases Responsible for Changes in Optical Properties of Organic Semiconducting Device Material Thin Films

DOI: 10.1155/2013/690237

Full-Text   Cite this paper   Add to My Lib

Abstract:

The environment sensitivity of organic semiconductors may change their molecular structure and hence optical properties. Exploiting this concept, experiments were performed on a green light emitting material bis(8-hydroxy quinoline)Zinc, (Znq2) used in organic light emitting diodes (OLEDs). Thin films were deposited at varying deposition parameters, and their properties were compared. We investigated that as deposited films have a significant component of Znq2 tetramer out of two known forms, that is, dihydrate and anhydrous tetramer (Znq2)4, the films deposited at lower deposition rates have higher anhydrous content. The degradation of thin film is shown, that changes the optical properties of film from green emission to blue which may be due to water adsorption and crystallization. 1. Introduction Small molecules such as metal based quinoline derivatives like Tris-(8-hydroxyquinoline) aluminum (Alq3) have been shown to have high efficiency as well as stability in organic light emitting devices, OLEDs [1]. Potential of Zinc(II) bis(8-hydroxyquinoline) (Znq2) has been amply recognized in the literature [2–5]. Znq2 devices have shown advantages over Alq3 in electron transport and have higher quantum yields in device performance which results in lower operating voltages [2]. Further, the devices have been shown to be comparatively more stable under influence of high operating voltages [3–5]. It is shown that electroluminescence (EL) of Znq2 devices does not shift with operating voltage [2]. As Znq2 is a symmetric molecule, it does not have variegated isomers as found in tris-quinalato structures [6]. Thermal analysis of Znq2 powders by differential scanning calorimetry (DSC) demonstrates a sole oligomeric species and no polymorphism [7]. It has also been shown that thermal stability of zinc complexes is higher than other transport layers [8]. In order to take advantage of various properties of this molecule, it is important to understand and correlate its properties in powders with thin films. While the lack of polymorphism is an important attribute in device application, the structure of the molecules in thin film forms is poorly understood. However, no clear study has yet been done on morphology and properties of Znq2 as thin film. In solution or powder form Znq2 is known to exist as monomer with H2O group attached to it. It has been shown that oligomers, in particular, tetramer of Znq2, are energetically favorable as well in solid state [7, 9]. Though many reports have suggested that tetramers may be present in thin films and may be responsible for

References

[1]  A. Kimyonok, X. Y. Wang, and M. Weck, “Electroluminescent poly(quinoline)s and metalloquinolates,” Polymer Reviews, vol. 46, no. 1, pp. 47–77, 2006.
[2]  L. S. Sapochak, F. E. Benincasa, R. S. Schofield et al., “Electroluminescent zinc(II) bis(8-hydroxyquinoline): structural effects on electronic states and device performance,” Journal of the American Chemical Society, vol. 124, no. 21, pp. 6119–6125, 2002.
[3]  N. Du, Q. Mei, and M. Lu, “Quinolinate aluminum and zinc complexes with multi-methyl methacrylate end groups: synthesis, photoluminescence, and electroluminescence characterization,” Synthetic Metals, vol. 149, no. 2-3, pp. 193–197, 2005.
[4]  G. Giro, M. Cocchi, P. Di Marco et al., “Role played by cell configuration and layer preparation in LEDs based on hydroxyquinoline metal complexes and a triphenyl-diamine derivative (TPD),” Synthetic Metals, vol. 102, no. 1–3, pp. 1018–1019, 1999.
[5]  Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, “Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter,” Japanese Journal of Applied Physics, Part 2, vol. 32, no. 4, pp. L514–L515, 1993.
[6]  Z.-A. Jian, Y.-Z. Luo, J.-M. Chung, et al., “Effects of isomeric transformation on characteristics of Alq3 amorphous layers prepared by vacuum deposition at various substrate temperatures,” Journal of Applied Physics, vol. 101, no. 12, Article ID 123708, 6 pages, 2007.
[7]  L. S. Sapochak, A. Falkowitz, K. F. Ferris, S. Steinberg, and P. E. Burrows, “Supramolecular structures of zinc (II) (8-quinolinolato) chelates,” Journal of Physical Chemistry B, vol. 108, no. 25, pp. 8558–8566, 2004.
[8]  N. Donzé, P. Péchy, M. Gr?tzel, M. Schaer, and L. Zuppiroli, “Quinolinate zinc complexes as electron transporting layers in organic light-emitting diodes,” Chemical Physics Letters, vol. 315, no. 5-6, pp. 405–410, 1999.
[9]  Y. Kai, M. Moraita, N. Yasuka, and N. Kasai, “The crystal and molecular structure of anhydrous zinc 8-quinolinolate complex, ,” Bulletin of the Chemical Society of Japan, vol. 58, no. 6, pp. 1631–1635, 1985.
[10]  M. Ghedini, M. La Deda, I. Aiello, and A. Grisolia, “Synthesis and photophysical characterisation of soluble photoluminescent metal complexes with substituted 8-hydroxyquinolines,” Synthetic Metals, vol. 138, no. 1-2, pp. 189–192, 2003.
[11]  T. A. Hopkins, K. Meerholz, S. Shaheen et al., “Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization,” Chemistry of Materials, vol. 8, no. 2, pp. 344–351, 1996.
[12]  B. S. Xu, Y. Y. Hao, H. Wang, H. F. Zhou, X. G. Liu, and M. W. Chen, “The effects of crystal structure on optical absorption/photoluminescence of bis(8-hydroxyquinoline)zinc,” Solid State Communications, vol. 136, no. 6, pp. 318–322, 2005.
[13]  T. Gavrilko, R. Fedorovich, G. Dovbeshko et al., “FTIR spectroscopic and STM studies of vacuum deposited aluminium (III) 8-hydroxyquinoline thin films,” Journal of Molecular Structure, vol. 704, no. 1–3, pp. 163–168, 2004.
[14]  H. C. Pan, F. P. Liang, C. J. Mao, J. J. Zhu, and H. Y. Chen, “Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing,” Journal of Physical Chemistry B, vol. 111, no. 20, pp. 5767–5772, 2007.
[15]  S. Y. Oh, C. H. Lee, E. S. Jung, J. W. Choi, and P. J. Jung, “Characteristics of organic EL device using PDPMA and heat-treated 8-hydroxyquinoline-zinc complex,” Molecular Crystals and Liquid Crystals Science and Technology Section A, vol. 371, pp. 459–462, 2001.
[16]  S. Kumar, A. K. Biswas, V. K. Shukla, A. Awasthi, R. S. Anand, and J. Narain, “Application of spectroscopic ellipsometry to probe the environmental and photo-oxidative degradation of poly(p-phenylenevinylene) (PPV),” Synthetic Metals, vol. 139, no. 3, pp. 751–753, 2003.
[17]  S. Kumar, V. K. Shukla, and A. Tripathi, “Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3),” Thin Solid Films, vol. 477, no. 1-2, pp. 240–243, 2005.
[18]  V. K. Shukla, S. Kumar, and D. Deva, “Light induced effects on the morphology and optical properties of tris-(8-hydroxyquinoline) aluminium (Alq3) small molecular thin film,” Synthetic Metals, vol. 156, no. 5-6, pp. 387–391, 2006.
[19]  V. K. Shukla, S. Kumar, and D. Deva, “AFM studies on formation of new phase responsible for enhanced photoluminescence in light-emitting small molecular thin films,” Journal of Luminescence, vol. 121, no. 1, pp. 132–136, 2006.
[20]  V. K. Shukla and S. Kumar, “Study of optical properties and light induced effects on Inq3 thin film used in organic light emitting devices,” Optical Materials, vol. 29, no. 12, pp. 1809–1816, 2007.
[21]  V. K. Shukla and S. Kumar, “Investigations of environmental induced effects on AlQ3 thin films by AFM phase imaging,” Applied Surface Science, vol. 253, no. 16, pp. 6848–6853, 2007.
[22]  V. K. Shukla and S. Kumar, “Conversion of a green light emitting zinc-quinolate complex thin film to a stable and highly packed blue emitter film,” Synthetic Metals, vol. 160, no. 5-6, pp. 450–454, 2010.
[23]  E. Margapoti, V. Shukla, A. Valore et al., “Excimer emission in single layer electroluminescent devices based on [ir(4, 5-diphenyl-2-methylthiazolo)2(5-methyl-1, 10-phenanthroline)]+ [PF6]-,” Journal of Physical Chemistry C, vol. 113, no. 28, pp. 12517–12522, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133