Langanite (La3Ga5.5Nb0.5O14, growth atmosphere: 99% Ar + 1% O2) and kanigasite (Ca3NbGa3Si2O14, growth atmosphere: 100% Ar) crystals grown by the Czochralski technique in Ir crucibles along <0001> direction have been firstly investigated by neutron diffraction. The difference between the compositions of upper (La2.935(2)□0.065)(Ga0.450Nb0.550(3))Ga3(Ga1.965(4)□0.035)(O13.90(1)□0.10) and lower (La2.940(1)□0.060)(Ga0.590Nb0.410(2))Ga5(O13.82(1)□0.18) parts of orange langanite crystal was found. It was established that the colorless Ca3NbGa3Si2O14 crystal grown by using the single-crystal charge has the composition (Ca2.95□0.05(1))NbGa3Si2O14 and is less defective in comparison to the yellow one grown by using the charge prepared by conventional solid-state reaction. For Ca3NbGa3Si2O14 and La3Ga5.5Nb0.5O14 crystals the possibility of microtwin formation (two unit cells connected by the translation: 1/2 z) was revealed for the first time. It was found that the difference between the color of crystals is attributed to the qualitative differentiation of oxygen vacancies. 1. Introduction Kanigasite (Ca3NbGa3Si2O14, CNGS) and langanite (La3Ga5.5Nb0.5O14, La3(Ga0.5Nb0.5)Ga5O14, LGN) crystals have langasite-type structure (sp.gr. P321, ) similar to langasite (La3Ga5SiO14, La3Ga4(GaSi)O14, LGS) and langatate (La3Ga5.5Ta0.5O14, La3(Ga0.5Ta0.5)Ga5O14, LGT) ones. Langasite family crystals possess a number of properties that ensure the successful application in piezo-, opto-, and acoustoelectronics. These properties include the absence of structural phase transitions up to the melting temperature, high thermal stability, high values of electromechanical coupling coefficients and acoustic , and low loss propagation of the elastic waves in the crystal. Langanite is characterized by the largest values of piezoelectric modules ( C/N; C/N) [1] among the langasite family crystals, whereas the CNGS has high values of the acoustic quality factor ( ) due to the fact that every atom in its structure is located in an individual position. The crystallographic orientation with a zero TCF (temperature coefficient of frequency) at room temperature was found for this crystal. The traditional Czochralski method is the primary method of obtaining large-size LGN [2–7] and CNGS [6–16] single crystals up to 200?mm in diameter. However, the use of these compounds depends on the composition (in other words, on the type and concentration of point defects), which does not coincide with the composition of the initial charge. There are quite a few works devoted to the structural investigation
References
[1]
J. Bohm, E. Chilla, C. Flannery et al., “Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT). II. Piezoelectric and elastic properties,” Journal of Crystal Growth, vol. 216, no. 1, pp. 293–298, 2000.
[2]
B. V. Mill and Y. V. Pisarevsky, “Langasite-type materials: from discovery to present state,” in Proceedings of IEEE International Frequency Control Symposium and Exhibition, pp. 133–144, June 2000.
[3]
T. Fukuda, H. Takeda, K. Shimamura et al., “Growth of new langasite single crystals for piezoelectric applications,” in Proceedings of the 11th IEEE International Symposium on Appliations of Ferroelectrics (ISAF-XI), pp. 315–319, August 1998.
[4]
J. Bohm, R. B. Heimann, M. Hengst, R. Roewer, and J. Schindler, “Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14 (LGT). Part I,” Journal of Crystal Growth, vol. 204, no. 1, pp. 128–136, 1999.
[5]
H. Takeda, K. Shimamura, T. Kohno, and T. Fukuda, “Growth and characterization of La3Nb0.5Ga5.5O14 single crystals,” Journal of Crystal Growth, vol. 169, no. 3, pp. 503–508, 1996.
[6]
G. M. Kuzmicheva, E. N. Domoroschina, V. B. Rybakov, A. B. Dubovsky, and E. A. Tyunina, “A family of langasite: growth and structure,” Journal of Crystal Growth, vol. 275, no. 1-2, pp. e715–e719, 2005.
[7]
B. H. T. Chai, A. N. P. Bustamante, and M. C. Chou, “A new class of ordered langasite structure compounds,” in Proceedings of IEEE International Frequency Control Symposium and Exhibition, pp. 163–168, June 2000.
[8]
B. V. Mill', E. L. Belokoneva, and T. Fukuda, “New compounds with a Ca3Ga2Ge2O14-type structure: A3XY3Z2O14 (A = Ca, Sr, Ba, Pb; X = Sb, Nb, Ta; Y = Ga, Al, Fe, In; Z = Si, Ge),” Russian Journal of Inorganic Chemistry, vol. 43, no. 8, pp. 1168–1175, 1998.
[9]
M. M. C. Chou, S. Jen, and B. H. T. Chai, “New ordered langasite structure compounds—crystal growth and preliminary investigation of the material properties,” in Proceedings of IEEE Ultrasonics Symposium, pp. 225–230, October 2001.
[10]
T. Karaki, R. Sato, M. Adachi, J. I. Kushibiki, and M. Arakawa, “Piezoelectric properties of Ca3NbGa3Si2O14 single crystal,” Japanese Journal of Applied Physics B, vol. 43, no. 9, pp. 6721–6724, 2004.
[11]
I. H. Jung, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Growth and structure of A3NbGa3Si2O14 (A=Sr, Ca) compounds,” Journal of Alloys and Compounds, vol. 339, no. 1-2, pp. 149–155, 2002.
[12]
I. H. Jung, Y. H. Kang, K. B. Shim, A. Yoshikawa, T. Fukuda, and K. H. Auh, “Single crystal growth and characterizations of A3NbGa3Si2O14-type compounds for piezoelectric applications,” Japanese Journal of Applied Physics B, vol. 40, no. 9, part 1, pp. 5706–5709, 2001.
[13]
Z. Wang, D. Yuan, D. Xu et al., “Growth and dielectric properties of Ca3NbGa3Si2O14 crystals,” Journal of Alloys and Compounds, vol. 370, no. 1-2, pp. 291–295, 2004.
[14]
Z. Wang, X. Cheng, D. Yuan et al., “Crystal growth and properties of Ca3NbGa3Si2O14 single crystals,” Journal of Crystal Growth, vol. 249, no. 1-2, pp. 240–244, 2003.
[15]
Z. Wang, D. Yuan, A. Wei et al., “Growth and optical activity of Ca3NbGa3Si2O14 single crystal,” Applied Physics A, vol. 78, no. 4, pp. 561–563, 2004.
[16]
X. Shi, D. Yuan, X. Yin, S. Guo, X. Zhang, and Z. Li, “Crystal growth and dielectric, piezoelectric and elastic properties of Ca3NbGa3Si2O14 single crystal,” Journal of Crystal Growth, vol. 293, no. 2, pp. 485–488, 2006.
[17]
A. A. Kaminskii, B. V. Mill, E. L. Belokoneva, C. E. Sarkisov, T. Y. Pastukhova, and G. G. Khogzhabagyan, “Crystal structure and stimulated emission La3Ga5.5Nb0. 5O14—Nd3+,” Journal of Inorganic Materials, vol. 20, pp. 2058–2061, 1984 (Russian).
[18]
T. S. Chernaya, S. S. Kazantsev, V. N. Molchanov et al., “Crystal structure of La3Nb0.5Ga5.5O14 at 20 K,” Crystallography Reports, vol. 51, no. 1, pp. 23–28, 2006.
[19]
G. M. Kuz'micheva, O. Zakharko, E. A. Tyunina, V. B. Rybakov, E. N. Domoroshchina, and A. B. Dubovski, “Neutron diffraction and X-ray diffraction investigations of langasite crystals,” Crystallography Reports, vol. 53, no. 6, pp. 989–994, 2008.
[20]
G. M. Kuz'micheva, O. Zaharko, E. A. Tyunina et al., “Point defects in langatate crystals,” Crystallography Reports, vol. 54, no. 2, pp. 279–282, 2009.
[21]
I. A. Kaurova, G. M. Kuz'micheva, V. B. Rybakov, A. B. Dubovskii, and A. Cousson, “Composition, structural parameters, and color of langatate,” Inorganic Materials, vol. 46, no. 9, pp. 988–993, 2010.
[22]
G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov et al., “The color of langatate crystals and its relationship with composition and optical properties,” Crystal Research and Technology, vol. 47, no. 2, pp. 131–138, 2012.
[23]
I. A. Kaurova, G. M. Kuz’micheva, V. B. Rybakov, A. B. Dubovsky, A. Cousson, and O. Zaharko, “Growth and structural investigations of Ca3NbGa3Si2O14 crystals,” Khimicheskaya Technologiya, vol. 11, no. 10, pp. 585–591, 2010 (Russian).
[24]
G. M. Kuz'micheva, E. A. Tyunina, E. N. Domoroshchina, V. B. Rybakov, and A. B. Dubovskii, “X-ray diffraction study of La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O1414 langasite-type single crystals,” Inorganic Materials, vol. 41, no. 4, pp. 412–419, 2005.
[25]
G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica A, vol. 64, no. 1, pp. 112–122, 2007.
[26]
A. A. Pugacheva, B. A. Maksimov, B. V. Mill' et al., “Growth and structure of La3Zr0.5Ga5Si0.5O14 crystals,” Crystallography Reports, vol. 49, no. 1, pp. 53–59, 2004.
[27]
G. B. Bokiy, Introduction to Crystal Chemistry, MGU, Moscow, Russia, 1954.
[28]
H. Kimura, S. Uda, O. Buzanov, X. Huang, and S. Koh, “The effect of growth atmosphere and Ir contamination on electric properties of La3Ta0.5Ga5.5O14 single crystal grown by the floating zone and Czochralski method,” Journal of Electroceramics, vol. 20, no. 2, pp. 73–80, 2008.
[29]
E. N. Domoroshchina, G. M. Kuz’micheva, V. B. Rybakov, A. B. Dubovsky, E. A. Tyunina, and S. Y. Stepanov, “Relationship between growth conditions, structure and optical properties of langasite crystals La3Ga5SiO14,” Perspective Materials, vol. 4, pp. 17–30, 2004 (Russian).
[30]
O. A. Buzanov, E. V. Zabelina, and N. S. Kozlova, “Optical properties of lanthanum-gallium tantalate at different growth and post-growth treatment conditions,” Crystallography Reports, vol. 52, no. 4, pp. 691–696, 2007.
[31]
E. A. Tyunina, G. M. Kuz’micheva, O. Zaharko, and A. B. Dubovsky, “Effect of growth and post-growth treatment conditions on langasite crystals optical properties,” Vestnik MITHT, vol. 5, no. 5, pp. 27–35, 2010 (Russian).
[32]
M. Adachi, T. Funakawa, and T. Karaki, “Growth of substituted langasite-type Ca3NbGa3Si2O14 single crystals, and their dielectric, elastic and piezoelectric properties,” in Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectronics (ISAF '02), pp. 411–414, June 2002.