全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Fluctuation Induced Excess Conductivity in Stainless Steel Sheathed MgB2 Tapes

DOI: 10.1155/2013/898607

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the analyses of fluctuation induced excess conductivity in the - behavior in the in situ prepared MgB2 tapes. The scaling functions for critical fluctuations are employed to investigate the excess conductivity of these tapes around transition. Two scaling models for excess conductivity in the absence of magnetic field, namely, first, Aslamazov and Larkin model, second, Lawrence and Doniach model, have been employed for the study. Fitting the experimental - data with these models indicates the three-dimensional nature of conduction of the carriers as opposed to the 2D character exhibited by the HTSCs. The estimated amplitude of coherence length from the fitted model is ~21??. 1. Introduction Since the discovery of superconductivity in MgB2 there has been enormous research owing to its speculated potential applications. Though there has been extensive research on both scientific and technical aspects, but yet little attention was paid to the fluctuation induced [1–5] enhanced conductivity in MgB2. Superconductor transition broadening, induced by these fluctuations in the superconducting order parameter, is observed in various kinds of superconductors [6, 7]. Such broadening is normally due to superconducting fluctuation derived from a low dimensionality, short coherence length, and high . High , short coherence length, and low carrier densities impart an excess conductivity due to thermal fluctuation in the superconducting order parameter. There have been numerous studies on excess conductivity and order parameter fluctuations in (Y-123) [8–17], Bi2Sr2CaCu2 (Bi-2122), Bi2Sr2Ca2Cu2Cu3 (Bi-2223) [18–22], Tl2Ba2CaCu2 (Tl-2212) [23, 24], HgBa2Ca2Cu3 (Hg-1223), and HgBa2CaCu2 (Hg-1212) [25] systems, but only few reports exist on the fluctuation studies [26–28] in MgB2, and those are performed in the presence of magnetic field. The superconducting transition in the absence of fluctuations is characterized by a mean non zero value of the order parameter below the transition temperature and zero above the transition temperature. There are fluctuations in the order parameter both above and below the transition temperature, that is, there is a probability of Cooper pair formation even above the transition temperature. These fluctuations contribute to the various physical properties like electrical conductivity, diamagnetism and specific heat both above and below [29]. The effect of thermodynamic fluctuations on most of these properties is in the small range around and the study of fluctuation conductivity may also provide information regarding the

References

[1]  T. Park, M. B. Salamon, C. U. Jung, M. S. Park, K. Kim, and S. I. Lee, “Fluctuation study of the specific heat of Mg11B2,” Physical Review B, vol. 66, no. 13, Article ID 134515, 5 pages, 2002.
[2]  J. Mosqueira, M. V. Ramallo, S. R. Currás, C. Torrón, and F. Vidal, “Fluctuation-induced diamagnetism above the superconducting transition in MgB2,” Physical Review B, vol. 65, no. 17, Article ID 174522, 7 pages, 2002.
[3]  A. S. Sidorenko, L. R. Tagirov, A. N. Rossolenko et al., “Fluctuation conductivity in superconducting MgB2,” Journal of Experimental and Theoretical Physics Letters, vol. 76, no. 1, pp. 17–20, 2002.
[4]  A. S. Sidorenko, V. I. Zdravkov, V. V. Ryazanov, et al., “Two-dimensional superconducting fluctuations in MgB2 films,” Journal of Superconductivity, vol. 17, pp. 211–213, 2004.
[5]  S. Rajput and S. Chaudhary, “Magneto-resistance investigations on the in-situ synthesized stainless steel sheathed MgB2 tapes,” Journal of Superconductivity and Novel Magnetism, 2012.
[6]  Q. Li and Q. Li, “Effects of vortex and critical fluctuations on magnetization of high superconductors,” in Physical Properties of High Temperature Superconductors V, D. M. Ginsberg, Ed., pp. 209–264, World Scientific, Singapore, 1994.
[7]  T. Ishiguro, K. Yamaji, and G. Saito, Superconductors, Springer, Berlin, Germany, 2nd edition, 1998.
[8]  P. P. Freitas, C. C. Tsuei, and T. S. Plaskett, “Thermodynamic fluctuations in the superconductor Y1Ba2Cu3 : evidence for three-dimensional superconductivity,” Physical Review B, vol. 36, no. 1, pp. 833–835, 1987.
[9]  B. Oh, K. Char, A. D. Kent et al., “Upper critical field, fluctuation conductivity, and dimensionality of YBa2Cu3O7-x,” Physical Review B, vol. 37, no. 13, pp. 7861–7864, 1988.
[10]  S. J. Hagen, Z. Z. Wang, and N. P. Ong, “Anomalous in-plane paraconductivity in single-crystal YBa2Cu3O7,” Physical Review B, vol. 38, no. 10, pp. 7137–7140, 1988.
[11]  F. Vidal, J. A. Veira, J. Maza, F. Miguélez, E. Morán, and M. A. Alario, “Probing thermodynamic fluctuations in high temperature superconductors,” Solid State Communications, vol. 66, no. 4, pp. 421–425, 1988.
[12]  M. P. Fontana, C. Paracchini, C. Paris de Renzi, P. Podini, F. Licci, and F. C. Matacotta, “Temperature dependence of resistivity in YBa2Cu3O7-δ: study of the effect of oxygen content and of paraconductivity,” Solid State Communications, vol. 69, no. 6, pp. 621–624, 1989.
[13]  N. Goldenfeld, P. D. Olmsted, T. A. Friedmann, and D. M. Ginsberg, “Estimation of material parameters from the observation of paraconductivity in YBaCuO,” Solid State Communications, vol. 65, no. 6, pp. 465–468, 1988.
[14]  T. A. Friedmann, J. P. Rice, J. Giapintzakis, and D. M. Ginsberg, “In-plane paraconductivity in a single crystal of superconducting YBa2Cu3O7-x,” Physical Review B, vol. 39, no. 7, pp. 4258–4266, 1989.
[15]  R. Hopfeng?rtner, B. Hensel, and G. Saemann-Ischenko, “Analysis of the fluctuation-induced excess dc conductivity of epitaxial YBa2Cu3O7 films: influence of a short-wavelength cutoff in the fluctuation spectrum,” Physical Review B, vol. 44, no. 2, pp. 741–749, 1991.
[16]  A. V. Pogrebnyakov, L. D. Yu, T. Freltoft, and P. Vase, “In-plane paraconductivity in c-oriented epitaxial YBa2Cu3O7-x films above Tc,” Physica C, vol. 183, no. 1–3, pp. 27–31, 1991.
[17]  J. A. Veira and F. Vidal, “Paraconductivity of ceramic YBa2Cu3 in the mean-field-like region,” Physica C, vol. 159, pp. 468–482, 1989.
[18]  K. Semba, A. Matsuda, and T. Ishii, “Normal and superconductive properties of Zn-substituted single-crystal YBa2(Cu1-xZnx)3O7-δ,” Physical Review B, vol. 49, no. 14, pp. 10043–10046, 1994.
[19]  S. Ravi and V. Seshu Bai, “Excess conductivity studies in pure and Ag doped 85 K phase in BiSrCaCuO system,” Solid State Communications, vol. 83, no. 2, pp. 117–121, 1992.
[20]  S. Ravi and V. Seshu Bai, “Fluctuation induced excess conductivity in the Bi1.2Pb0.3Sr1.5Ca2Cu3Oy compound,” Physica C, vol. 182, no. 4–6, pp. 345–350, 1991.
[21]  P. Mandal, A. Poddar, A. N. Das, B. Ghosh, and P. Choudhury, “Excess conductivity and thermally activated dissipation studies in Bi2Sr2Ca1Cu2Ox single crystals,” Physica C, vol. 169, no. 1-2, pp. 43–49, 1990.
[22]  A. Poddar, P. Mandal, A. N. Das, B. Ghosh, and P. Choudhury, “Electrical resistivity, magnetoresistance, magnetisation, hall coefficient and excess conductivity in Pb-doped Bi-Sr-Ca-Cu oxides,” Physica C, vol. 161, no. 5-6, pp. 567–573, 1989.
[23]  H. M. Duan, W. Kiehl, C. Dong et al., “Anisotropic resistivity and paraconductivity of Tl2Ba2CaCu2O8 single crystals,” Physical Review B, vol. 43, no. 16, pp. 12925–12929, 1991.
[24]  D. H. Kim, A. M. Goldman, J. H. Kang, K. E. Gray, and R. T. Kampwirth, “Fluctuation conductivity of Tl-Ba-Ca-Cu-O thin films,” Physical Review B, vol. 39, no. 16, pp. 12275–12278, 1989.
[25]  M. O. Mun, S. Lee, M. K. Bae, and S. I. Lee, “Conductivity fluctuation in HBCCO superconductor,” Solid State Communications, vol. 90, no. 9, pp. 603–606, 1994.
[26]  Z. Hol’anová, J. Ka?marcik, P. Szabo et al., “Critical fluctuations in the carbon-doped magnesium diboride,” Physica C, vol. 404, pp. 195–199, 2004.
[27]  H. J. Kim, W. N. Kang, H. J. Kim et al., “Mixed-state magnetoresistance of c-axis-oriented MgB2 thin films,” Physica C, vol. 391, no. 2, pp. 119–124, 2003.
[28]  T. Masui, S. Lee, and S. Tajima, “Origin of superconductivity transition broadening in MgB2,” Physica C, vol. 383, no. 4, pp. 299–305, 2003.
[29]  Y. Iye, “Superconducting properties associated with short coherence length—fluctuation effect and flux creep phenomenon in HTSC,” in Studies of High Temperature Superconductors, A. Narlikar, Ed., vol. 1, pp. 166–181, Nova Science Publishers, New York, NY, USA, 1989.
[30]  S. Rajput and S. Chaudhary, “On the superconductivity in in situ synthesized MgB2 tapes,” Journal of Physics and Chemistry of Solids, vol. 69, no. 8, pp. 1945–1950, 2008.
[31]  L. G. Aslamazov and A. I. Larkin, “Effect of fluctuations on the properties of a superconductor above the critical temperature,” Soviet Physics, Solid State, vol. 10, pp. 875–880, 1968.
[32]  L. G. Aslamasov and A. I. Larkin, “The influence of fluctuation pairing of electrons on the conductivity of normal metal,” Physics Letters A, vol. 26, no. 6, pp. 238–239, 1968.
[33]  W. E. Lawrence and S. Doniach, “Theory of layer structure superconductor,” in Proceedings of the 12th International Conference on Low-Temperature Physics, E. Kanda, Ed., p. 361, Keigaku, Tokyo, 1971.
[34]  H. J. Kim, K. H. Kim, W. N. Kang et al., “Fluctuation of superconductivity in MgB2 thin films,” Physica C, vol. 408–410, no. 1–4, pp. 72–74, 2004.
[35]  S. H. Han and O. Rapp, “Superconducting fluctuations in the resistivity of Bi-based 2:2:2:3,” Solid State Communications, vol. 94, no. 8, pp. 661–666, 1995.
[36]  U. C. Upreti and A. V. Narlikar, “Excess conductivity, critical region and anisotropy in YBa2Cu4O8,” Solid State Communications, vol. 100, no. 9, pp. 615–620, 1996.
[37]  M. V. Ramallo and F. Vidal, “On the width of the full-critical region for thermal fluctuations around the superconducting transition in layered superconductors,” Europhysics Letters, vol. 39, no. 2, pp. 177–182, 1997.
[38]  R. K. Kremer, B. J. Gibson, and K. Ahn, “Heat capacity of MgB2: evidence for moderately strong coupling behavior,” http://arxiv.org/abs/cond-mat/0102432.
[39]  D. Mijatovic, MgB2 thin films and Josephson devices [Ph.D. thesis], University of Twente, Enschede, The Netherlands, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133