全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermal Transport between Graphene Sheets and SiC Substrate by Molecular-Dynamical Calculation

DOI: 10.1155/2014/479808

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using nonequilibrium molecular dynamics, we investigate the mechanisms of thermal transport across SiC/graphene sheets. In simulations, 3C-, 4H-, and 6H-SiC are considered separately. Interfacial thermal resistances between Bernal stacking graphene sheets and SiC (Si- or C-terminated) are calculated at the ranges of 100?K~700?K. The results indicate, whether Si-terminated or C-terminated interface, the interfacial thermal resistances of 4H- and 6H-SiC have similar trends over temperatures. Si-terminated interfacial thermal resistances of 3C-SiC are higher than those of 4H- and 6H-SiC in a wide temperature range from 100?K to 600?K. But, for C-rich interface, this range is reduced from 350?K to 500?K. 1. Introduction For the atomically thin structure of graphene, it has attracted much attention due to potential applications to thermoelectric and photoelectric devices. Over the past decade, researchers mainly focus on the fabrication of graphene and its physical characteristics. The most common used methods of graphene fabrication are epitaxial growth on silicon carbide (SiC) and chemical vapor deposition (CVD). As to epitaxial growth method, Si atoms sublimate from a single-crystal SiC substrate and create large area graphene sheets. CVD method employs carbon source gas to react with the specific substrate chemically, so as to synthesize graphene sheets. In recent years, the techniques of graphene production have been improved dramatically. Tzalenchuk et al. [1] synthesized 50?um2 graphene sheets by epitaxial growth method. Soon after, Bae et al. [2] made graphene films with 762?mm diagonal length onto Cu substrate. In 2011, Zhang et al. [3] first realized the low temperature growth of graphene onto several substrates such as SiC, SiO2, and Al2O3 by plasma enhancement chemical vapor deposition (PECVD). Through solid-state molecular beam epitaxy (SSMBE), Tang et al. [4] made graphene films grown on Si(111) substrate and analyzed the effects of SiC buffer layer on stabilizing the surface of Si substrate. Janssen et al. [5–7] investigated the Hall resistance in epitaxial graphene grown on Si-terminated SiC and other graphene material systems. At present, although numerous studies have demonstrated the high thermal conductivities of graphene and graphene sheets along tangent direction, little work has been done to address the characteristics of graphene sheets along normal direction, let alone SiC/graphene composite films. 2. Theory As to theoretical study, researchers usually adopt analytical or numerical approaches to perform nanoscale heat transport

References

[1]  A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov et al., “Towards a quantum resistance standard based on epitaxial graphene,” Nature Nanotechnology, vol. 5, no. 3, pp. 186–189, 2010.
[2]  S. Bae, H. Kim, Y. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, vol. 5, no. 8, pp. 574–578, 2010.
[3]  L. C. Zhang, Z. W. Shi, Y. Wang, R. Yang, D. Shi, and G. Zhang, “Catalyst-free growth of nanographene films on various substrates,” Nano Research, vol. 4, no. 3, pp. 315–321, 2011.
[4]  J. Tang, C. Y. Kang, L. M. Li, W. S. Yan, S. Q. Wei, and P. S. Xu, “Graphene films grown on Si substrate via direct deposition of solid-state carbon atoms,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 43, no. 8, pp. 1415–1418, 2011.
[5]  T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova et al., “Anomalously strong pinning of the filling factor ν=2 in epitaxial graphene,” Physical Review B: Condensed Matter and Materials Physics, vol. 83, no. 23, Article ID 233402, 2011.
[6]  T. J. B. M. Janssen, N. E. Fletcher, R. Goebel et al., “Graphene, universality of the quantum Hall effect and redefinition of the SI system,” New Journal of Physics, vol. 13, Article ID 093026, 2011.
[7]  T. J. B. M. Janssen, A. Tzalenchuk, S. L. Avila, et al., “Quantum resistance metrology using graphene,” Reports on Progress in Physics, vol. 76, no. 10, Article ID 104501, 2013.
[8]  M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1987.
[9]  F. C. Chou, J. R. Lukes, X. G. Liang, et al., “Molecular dynamic in microscale thermophysical engineering,” Annual Review of Heat Transfer, vol. 10, pp. 141–176, 1999.
[10]  F. Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity,” Journal of Chemical Physics, vol. 106, no. 14, pp. 6082–6085, 1997.
[11]  P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-level sim ulation methods for computing thermal conductivity,” Phyical Review B, vol. 65, no. 14, Article ID 144306, 2002.
[12]  M. H. Khadem and A. P. Wemhoff, “Comparison of Green-Kubo and NEMD heat flux formulations for thermal conductivity prediction using the Tersoff potential,” Computational Materials Science, vol. 69, pp. 428–434, 2013.
[13]  S. Ju, X. Liang, and X. Xu, “Out-of-plane thermal conductivity of polycrystalline silicon nanofilm by molecular dynamics simulation,” Journal of Applied Physics, vol. 110, no. 5, Article ID 054318, 2011.
[14]  X. P. Huang, X. L. Huai, S. Q. Liang, et al., “Thermal transport in Si/Ge nanocomposites,” Journal of Physics D: Applied Physics, vol. 42, no. 9, Article ID 095416, 2009.
[15]  S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, “Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations,” Journal of Applied Physics, vol. 105, no. 1, Article ID 014316, 2009.
[16]  X. M. Yang, A. C. To, and R. Tian, “Anomalous heat conduction behavior in thin finite-size silicon nanowires,” Nanotechnology, vol. 21, no. 15, Article ID 155704, 2010.
[17]  M. Hu, K. P. Giapis, J. V. Goicochea, X. L. Zhang, and D. Poulikakos, “Significant reduction of thermal conductivity in Si/Ge core-shell nanowires,” Nano Letters, vol. 11, no. 2, pp. 618–623, 2011.
[18]  G. Wu and B. W. Li, “Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations,” Physical Review B, vol. 76, no. 8, Article ID 085424, 2007.
[19]  N. Yang, G. Zhang, and B. W. Li, “Carbon nanocone: a promising thermal rectifier,” Applied Physics Letters, vol. 93, no. 24, Article ID 243111, 2008.
[20]  W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, “Thermal rectification in thickness asy mmetric graphene nanoribbons,” Applied Physics Letters, vol. 99, no. 19, Article ID 193104, 2011.
[21]  T. F. Luo and J. R. Lloyd, “Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study,” Advanced Functional Materials, vol. 22, no. 12, pp. 2495–2502, 2012.
[22]  V. Samvedi and V. Tomar, “Role of heat flow direction, monolayer film thickness, and periodicity in controlling thermal conductivity of a Si-Ge superlattice system,” Journal of Applied Physics, vol. 105, no. 1, Article ID 013541, 2009.
[23]  J. Tersoff, “Modeling solid-state chemistry: interatomic potentials for multicomponent systems,” Physical Review B, vol. 39, no. 8, Article ID 5566, 1989.
[24]  D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Physical Review B, vol. 42, no. 15, Article ID 9458, 1990.
[25]  S. J. Zhao, J. M. Xue, Y. G. Wang, et al., “Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study,” Nanotechnology, vol. 23, no. 28, Article ID 285703, 2012.
[26]  M. T. Pettes, X. S. Li, Z. Yao et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010.
[27]  J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 323202, 2008.
[28]  A. B. J. Kr?u?lich, L. Dressler, P. Kuschnerus, et al., “High-precision determination of atomic positions in crystals: the case of 6H- and 4H-SiC,” Physical Review B, vol. 57, no. 5, pp. 2647–2650, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133