全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film

DOI: 10.1155/2014/736271

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this study is to improve the performance properties of K-carrageenan (K-CRG) by utilizing nanosilica (NSI) as the reinforcing agent. The composite films were prepared by solution casting method. NSI was added up to 1.5% in the K-CRG matrix. The prepared films were characterized for mechanical (tensile strength, tensile modulus, and elongation at break), thermal (differential scanning calorimetry, thermogravimetric analysis), barrier (water vapour transmission rate), morphological (scanning electron microscopy), contact angle, and crystallinity properties. Tensile strength, tensile modulus, and crystallinity were found to have increased by 13.8, 15, and 48% whereas water vapour transmission rate was found to have decreased by 48% for 0.5% NSI loaded K-CRG composite films. NSI was found to have formed aggregates for concentrations above 0.5% as confirmed by scanning electron microscopy. Melting temperature, enthalpy of melting, and degradation temperature of K-CRG increased with increase in concentration of NSI in K-CRG. Contact angle also increased with increase in concentration of NSI in K-CRG, indicating the decrease in hydrophilicity of the films improving its water resistance properties. This knowledge of the composite film could make beneficial contributions to the food and pharmaceutical packaging applications. 1. Introduction Biopolymers are the polymeric materials obtained from renewable agriculture by-products, waste of food processing industry, and other natural resources (animals, plants, and algae). They are attracting considerable attention as potential replacement for petroleum based plastics due to the increased consciousness for sustainable development. Biopolymers maintain the carbon dioxide balance after their degradation and are readily biodegradable, which will save energy on waste disposal. However, limited performance and high cost of these materials are restricting their competitiveness to traditional thermoplastics. One way to enhance the material properties and to broaden the possible applications for biopolymers is to produce nanocomposites using it [1]. K-carrageenan (K-CRG) is a generic name for a family of polysaccharides, obtained by extraction from certain species of red seaweeds. K-CRG is a water-soluble biopolymer (at elevated temperature) with a linear chain of partially sulphated galactans, which presents high potential as a gel-forming material [2]. Structure of K-CRG is shown in Figure 1. Figure 1: Chemical structure of K-carrageenan. Nanosilica (NSI) filled polymer matrix composites have received

References

[1]  A. K. Mohanty, L. T. Drzal, and M. Misra, “Nano reinforcements of bio-based polymers: the hope and the reality,” Polymeric Materials Science and Engineering, vol. 88, pp. 60–61, 2003.
[2]  F. Van de Velde and G. A. De Ruiter, Carrageenan Polysaccharides and Polyamides in the Food Industry, Wiley-VCH, Weinheim, Germany, 2005.
[3]  C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, “Tensile performance improvement of low nanoparticles filled-polypropylene composites,” Composites Science and Technology, vol. 62, no. 10-11, pp. 1327–1340, 2002.
[4]  M. W. Lee, X. Hu, L. Li, C. Y. Yue, K. C. Tam, and L. Y. Cheong, “PP/LCP composites: effects of shear flow, extensional flow and nanofillers,” Composites Science and Technology, vol. 63, no. 13, pp. 1921–1929, 2003.
[5]  M. M. Hasan, Y. Zhou, H. Mahfuz, and S. Jeelani, “Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6,” Materials Science and Engineering A, vol. 429, no. 1-2, pp. 181–188, 2006.
[6]  A. Sargsyan, A. Tonoyan, S. Davtyan, and C. Schick, “The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data,” European Polymer Journal, vol. 43, no. 8, pp. 3113–3127, 2007.
[7]  R. D. Priestley, P. Rittigstein, L. J. Broadbelt, K. Fukao, and J. M. Torkelson, “Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites,” Journal of Physics Condensed Matter, vol. 19, no. 20, Article ID 205120, 2007.
[8]  K. Chrissafis, K. M. Paraskevopoulos, E. Pavlidou, and D. Bikiaris, “Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles,” Thermochimica Acta, vol. 485, no. 1-2, pp. 65–71, 2009.
[9]  E. F. Voronin, V. M. Gun'ko, N. V. Guzenko et al., “Interaction of poly(ethylene oxide) with fumed silica,” Journal of Colloid and Interface Science, vol. 279, no. 2, pp. 326–340, 2004.
[10]  K. Chrissafis, K. M. Paraskevopoulos, G. Z. Papageorgiou, and D. N. Bikiaris, “Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol),” Journal of Applied Polymer Science, vol. 110, no. 3, pp. 1739–1749, 2008.
[11]  J. Lee, K. Jin Lee, and J. Jang, “Effect of silica nanofillers on isothermal crystallization of poly(vinyl alcohol): in-situ ATR-FTIR study,” Polymer Testing, vol. 27, no. 3, pp. 360–367, 2008.
[12]  Y.-L. Chung, S. Ansari, L. Estevez, S. Hayrapetyan, E. P. Giannelis, and H.-M. Lai, “Preparation and properties of biodegradable starch-clay nanocomposites,” Carbohydrate Polymers, vol. 79, no. 2, pp. 391–396, 2010.
[13]  N. R. Savadekar, V. S. Karande, N. Vigneshwaran, A. K. Bharimalla, and S. T. Mhaske, “Preparation of nano cellulose fibers and its application in kappa-carrageenan based film,” International Journal of Biological Macromolecules, vol. 51, pp. 1008–1013, 2012.
[14]  N. R. Savadekar and S. T. Mhaske, “Synthesis of nano cellulose fibers and effect on thermoplastics starch based films,” Carbohydrate Polymers, vol. 89, no. 1, pp. 146–151, 2012.
[15]  S. Jose, S. Thomas, P. K. Biju, P. Koshy, and J. Karger-Kocsis, “Thermal degradation and crystallisation studies of reactively compatibilised polymer blends,” Polymer Degradation and Stability, vol. 93, no. 6, pp. 1176–1187, 2008.
[16]  V. Rao and J. Johns, “Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis,” Journal of Thermal Analysis and Calorimetry, vol. 92, no. 3, pp. 801–806, 2008.
[17]  D.-W. Lee, S.-J. Park, S.-K. Ihm, and K.-H. Lee, “One-pot synthesis of Pt-nanoparticle-embedded mesoporous titania/silica and its remarkable thermal stability,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7634–7638, 2007.
[18]  X. Yuan, C. Li, G. Guan, Y. Xiao, and D. Zhang, “Thermal degradation investigation of poly(ethylene terephthalate)/fibrous silicate nanocomposites,” Polymer Degradation and Stability, vol. 93, no. 2, pp. 466–475, 2008.
[19]  J. P. Busnel and S. B. Rose-Murphy, “Thixotropic behaviour of very dilute gelatin solutions,” International Journal of Biological Macromolecules, vol. 10, no. 2, pp. 121–124, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133