全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acid Corrosion Inhibition and Adsorption Behaviour of Ethyl Hydroxyethyl Cellulose on Mild Steel Corrosion

DOI: 10.1155/2014/101709

Full-Text   Cite this paper   Add to My Lib

Abstract:

The corrosion inhibition of mild steel in 1.0?M H2SO4 solution by ethyl hydroxyethyl cellulose has been studied in relation to the concentration of the additive using weight loss measurement, EIS, polarization, and quantum chemical calculation techniques. The results indicate that EHEC inhibited corrosion reaction in the acid medium and inhibition efficiency increased with EHEC concentration. Further increase in inhibition efficiency is observed in the presence of iodide ions, due to synergistic effect. Impedance results reveal that EHEC is adsorbed on the corroding metal surface. Adsorption followed a modified Langmuir isotherm, with very high negative values of the free energy of adsorption . The polarization data indicate that the inhibitor was of mixed type, with predominant effect on the cathodic partial reaction. The frontier molecular orbitals, HOMO (the highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular orbital) as well as local reactivity of the EHEC molecule, were analyzed theoretically using the density functional theory to explain the adsorption characteristics at a molecular level. The theoretical predictions showed good agreement with experimental results. 1. Introduction Organic compounds containing polar functional groups such as nitrogen, sulphur, and/or oxygen in a conjugated system have been reported to be effective as corrosion inhibitors for steel [1–8]. Some of the organic compounds are polymeric in nature and therefore possess multiple active centres. The study of corrosion inhibition by polymers has been on the increase in recent times. Polymers are employed as corrosion inhibitors because the presence of many adsorption centres helps them form complexes with metal ions. The formed complexes were adsorbed on the metal surface to form a barrier film which separated the metal surface from the corrosive agents present in the aggressive solution [9–14]. The effectiveness of inhibition by the adsorbed inhibitor system will be determined by the energy released on forming the metal-inhibitor bond compared to the corresponding changes when the pure acid reacts with the metal [15]. Some authors have reported on the effectiveness of polymeric corrosion inhibitors [16–20]. In their accounts, the inhibitive power of these polymers is related structurally to the cyclic rings and heteroatoms which are the major active centres of adsorption. In order to support experimental studies, theoretical calculations are conducted in order to provide molecular-level understanding of the observed experimental behaviour. The

References

[1]  E. E. Oguzie, Y. Li, and F. H. Wang, “Effect of ascorbic acid on mild steel dissolution in sulphuric acid solution investigated by electrochemical polarization and surface probe techniques,” Journal of Applied Electrochemistry, vol. 37, no. 10, pp. 1183–1190, 2007.
[2]  L. G. da Trindade and R. S. Goncalves, “Evidence of caffeine adsorption on a low-carbon steel surface in ethanol,” Corrosion Science, vol. 51, no. 8, pp. 1578–1583, 2009.
[3]  F. Bentiss, M. Outirite, M. Traisnel et al., “Improvement of corrosion resistance of carbon steel in hydrochloric acid medium by 3,6-bis(3-pyridyl)pyridazine,” International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1699–1723, 2012.
[4]  S. M. A. Shibli and V. S. Saji, “Co-inhibition characteristics of sodium tungstate with potassium iodate on mild steel corrosion,” Corrosion Science, vol. 47, no. 9, pp. 2213–2224, 2005.
[5]  E. E. Oguzie, C. Unaegbu, C. N. Ogukwe, B. N. Okolue, and A. I. Onuchukwu, “Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additives,” Materials Chemistry and Physics, vol. 84, no. 2-3, pp. 363–368, 2004.
[6]  V. Kumpawat, U. Garg, and R. K. Tak, “Corrosion inhibition of aluminium in acid media by naturally occurring plant Artocarpus heterophyllus and Acacia senegal,” Journal of Indian Council of Chemists, vol. 26, no. 1, pp. 82–84, 2009.
[7]  I.A. Akpan and N. O. Offiong, “Effect of ethanolamine and ethylamine on the entropy content of the corrosion of mild steel in tetraoxosulphate (VI) acid solution,” Chemistry and Materials Research, vol. 2, no. 7, pp. 40–47, 2012.
[8]  M. Kissi, M. Bouklah, B. Hammouti, and M. Benkaddour, “Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution,” Applied Surface Science, vol. 252, no. 12, pp. 4190–4197, 2006.
[9]  S. Rajendran, S. P. Sridevi, N. Anthony, A. J. Amalraj, and M. Sundaravadivelu, “Corrosion behaviour of carbon steel in polyvinyl alcohol,” Anti-Corrosion Methods and Materials, vol. 52, no. 2, pp. 102–107, 2005.
[10]  B. Qian, J. Wang, M. Zheng, and B. Hou, “Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4,” Corrosion Science, vol. 75, pp. 184–192, 2013.
[11]  D. A. Arthur, A. Jonathan, P. O. Ameh, and C. Anya, “A review on the assessment of polymeric materials used as corrosion inhibitor of metals and alloys,” International Journal of Industrial Chemistry, vol. 4, article 2, pp. 1–9, 2013.
[12]  S. A. Umoren, Y. Li, and F. H. Wang, “Effect of polyacrylic acid on the corrosion behaviour of aluminium in sulphuric acid solution,” Journal of Solid State Electrochemistry, vol. 14, no. 12, pp. 2293–2305, 2010.
[13]  S. Banerjee, A. Mishra, M. M. Singh, B. Maiti, B. Ray, and P. Maiti, “Highly efficient polyurethane ionomer corrosion inhibitor: the effect of chain structure,” RSC Advances, vol. 1, no. 2, pp. 199–210, 2011.
[14]  A. K. Dubey and G. Singh, “Corrosion inhibition of mild steel in sulphuric acid solution by using polyethylene glycol methyl ether (PEGME),” Portugaliae Electrochimica Acta, vol. 25, no. 2, pp. 221–235, 2007.
[15]  E. E. Oguzie, S. G. Wang, Y. Li, and F. H. Wang, “Influence of iron microstructure on corrosion inhibitor performance in acidic media,” The Journal of Physical Chemistry C, vol. 113, no. 19, pp. 8420–8429, 2009.
[16]  S. A. Umoren, E. E. Ebenso, P. C. Okafor, and O. Ogbobe, “Water-soluble polymers as corrosion inhibitors,” Pigment & Resin Technology, vol. 35, no. 6, pp. 346–352, 2006.
[17]  S. A. Umoren and I. B. Obot, “Polyvinylpyrollidone and polyacrylamide as corrosion inhibitors for mild steel in acidic medium,” Surface Review and Letters, vol. 15, no. 3, pp. 277–284, 2008.
[18]  H. Ashassi-Sorkhabi and N. Ghalebsaz-Jeddi, “Inhibition effect of polyethylene glycol on the corrosion of carbon steel in sulphuric acid,” Materials Chemistry and Physics, vol. 92, no. 2-3, pp. 480–486, 2005.
[19]  A. Yurt, V. Butun, and B. Duran, “Effect of the molecular weight and structure of some novel water-soluble triblock copolymers on the electrochemical behaviour of mild steel,” Materials Chemistry and Physics, vol. 105, no. 1, pp. 114–121, 2007.
[20]  S. A. Umoren, “Polymers as corrosion inhibitors for metals in different media—a review,” The Open Corrosion Journal, vol. 2, pp. 175–188, 2009.
[21]  K. F. Khaled, “Corrosion control of copper in nitric acid solutions using some amino acids—a combined experimental and theoretical study,” Corrosion Science, vol. 52, no. 10, pp. 3225–3234, 2010.
[22]  E. E. Oguzie, C. O. Akalezi, C. K. Enenebeaku, and J. N. Aneke, “Corrosion inhibition and adsorption behavior of malachite green dye on aluminum corrosion,” Chemical Engineering Communications, vol. 198, no. 1, pp. 46–60, 2011.
[23]  J. Cruz, T. Pandiyan, and E. Garcia-Ochoa, “A new inhibitor for mild carbon steel: electrochemical and DFT studies,” Journal of Electroanalytical Chemistry, vol. 583, no. 1, pp. 8–16, 2005.
[24]  J. Cruz, R. Martinez, J. Genesca, and E. Garcia-Ochoa, “Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media,” Journal of Electroanalytical Chemistry, vol. 566, no. 1, pp. 111–121, 2004.
[25]  E. E. Oguzie, Y. Li, S. G. Wang, and F. Wang, “Understanding corrosion inhibition mechanisms—experimental and theoretical approach,” RSC Advances, vol. 1, no. 5, pp. 866–873, 2011.
[26]  A. Kumar, A. Sankara, M. Kumaravel, and S. Rameshkumar, “Clitoria ternatea—extracts as corrosion inhibitor for mild steel in acid medium,” International Journal of Engineering Research and Development, vol. 8, no. 5, pp. 64–67, 2013.
[27]  E. E. Oguzie, G. N. Onuoha, and A. I. Onuchukwu, “Inhibitory mechanism of mild steel corrosion in 2?M sulphuric acid solution by methylene blue dye,” Materials Chemistry and Physics, vol. 89, no. 2-3, pp. 305–311, 2005.
[28]  E. E. Oguzie, C. K. Enenebeaku, C. O. Akalezi, S. C. Okoro, A. A. Ayuk, and E. N. Ejike, “Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media,” Journal of Colloid and Interface Science, vol. 349, no. 1, pp. 283–292, 2010.
[29]  E. E. Oguzie, “Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract,” Corrosion Science, vol. 49, no. 3, pp. 1527–1539, 2007.
[30]  S. A. Umoren, I. B. Obot, and E. E. Ebenso, “Corrosion inhibition of aluminium using exudate gum from Pachylobus edulis in the presence of halide ions in HCl,” E-Journal of Chemistry, vol. 5, no. 2, pp. 355–364, 2008.
[31]  P. C. Okafor, E. E. Ebenso, and U. J. Ekpe, “Azadirachta indica extracts as corrosion inhibitor for mild steel in acid medium,” International Journal of Electrochemical Science, vol. 5, no. 7, pp. 978–993, 2010.
[32]  M. Lebrini, F. Robert, A. Lecente, and C. Roos, “Corrosion inhibition of C38 steel in 1?M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant,” Corrosion Science, vol. 53, no. 2, pp. 687–695, 2011.
[33]  E. E. Oguzie, “Influence of halide ions on the inhibitive effect of congo red dye on the corrosion of mild steel in sulphuric acid solution,” Materials Chemistry and Physics, vol. 87, no. 1, pp. 212–217, 2004.
[34]  E. E. Oguzie, “Inhibition of acid corrosion of mild steel by Telfaria occidentalis extract,” Pigment & Resin Technology, vol. 34, no. 6, pp. 321–326, 2005.
[35]  E. E. Oguzie, V. O. Njoku, C. K. Enenebeaku, C. O. Akalezi, and C. Obi, “Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media,” Corrosion Science, vol. 50, no. 12, pp. 3480–3486, 2008.
[36]  M. A. Ameer, E. Khamis, and G. al-Senani, “Effect of temperature on stability of adsorbed inhibitors on steel in phosphoric acid solution,” Journal of Applied Electrochemistry, vol. 32, no. 2, pp. 149–156, 2002.
[37]  P. C. Okafor, E. E. Oguzie, G. E. Iniama, M. E. Ikpi, and U. J. Ekpe, “Corrosion inhibition properties of thiosemicarbazone and semicarbazone derivatives in concentrated acid environment,” Global Journal of Pure and Applied Sciences, vol. 14, no. 1, pp. 89–96, 2008.
[38]  I. B. Obot, “Synergistic effect of nizoral and iodide ions on the corrosion inhibition of mild steel in sulphuric acid solution,” Portugaliae Electrochimica Acta, vol. 27, no. 5, pp. 539–553, 2009.
[39]  N. O. Eddy, S. A. Odoemelam, and A. O. Odiongenyi, “Ethanol extract of musa species peels as a green corrosion inhibitor for mild steel: kinetics, adsorption and thermodynamic considerations,” Electronic Journal of Environmental, Agricultural and Food Chemistry, vol. 8, no. 4, pp. 243–255, 2009.
[40]  M. H. Hussin and M. J. Kassim, “The corrosion inhibition and adsorption behavior of Uncaria gambir extract on mild steel in 1?M HCl,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 461–468, 2010.
[41]  V. K. W. Grips, V. E. Selvi, H. C. Barshilia, and K. S. Rajam, “Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering,” Electrochimica Acta, vol. 51, no. 17, pp. 3461–3468, 2006.
[42]  E. E. Oguzie, “Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel,” Materials Chemistry and Physics, vol. 99, no. 2-3, pp. 441–446, 2006.
[43]  B. Wang, M. Du, J. Zhang, and C. J. Gao, “Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion,” Corrosion Science, vol. 53, no. 1, pp. 353–361, 2011.
[44]  G. Mu and X. Li, “Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches,” Journal of Colloid and Interface Science, vol. 289, no. 1, pp. 184–192, 2005.
[45]  A. K. Satapathy, G. Gunasekaran, S. C. Sahoo, K. Amit, and P. V. Rodrigues, “Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution,” Corrosion Science, vol. 51, no. 12, pp. 2848–2856, 2009.
[46]  E. E. Oguzie, Y. Li, and F. H. Wang, “Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion,” Journal of Colloid and Interface Science, vol. 310, no. 1, pp. 90–98, 2007.
[47]  L. M. Rodríguez-Valdez, W. Villamisar, M. Casales et al., “Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors,” Corrosion Science, vol. 48, no. 12, pp. 4053–4064, 2006.
[48]  H. Ju, Z. P. Kai, and Y. Li, “Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: a quantum chemical calculation,” Corrosion Science, vol. 50, no. 3, pp. 865–871, 2008.
[49]  L. M. Rodríguez-Valdez, A. Martínez-Villafa?e, and D. Glossman-Mitnik, “Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties,” Journal of Molecular Structure: THEOCHEM, vol. 713, no. 1–3, pp. 65–70, 2005.
[50]  K. F. Khaled, “Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles,” Electrochimica Acta, vol. 53, no. 9, pp. 3484–3492, 2008.
[51]  R. M. Issa, M. K. Awad, and F. M. Atlam, “Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils,” Applied Surface Science, vol. 255, no. 5, pp. 2433–2441, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133