Conventional building materials are widely used in a developing country like Malaysia. This type of material is costly. Oil palm shell (OPS) is a type of farming solid waste in the tropical region. This paper aims to investigate strength characteristics and cost analysis of concrete produced using the gradation of OPS 0–50% on conventional coarse aggregate with the mix proportions 1?:?1.65?:?2.45, 1?:?2.5?:?3.3, and 1?:?3.3?:?4.2 by the weight of ordinary Portland cement, river sand, crushed stone, and OPS as a substitution for coarse aggregate. The corresponding w/c ratios were used: 0.45, 0.6, and 0.75, respectively, for the defined mix proportions. Test results indicate that compressive strength of concrete decreased as the percentage of the OPS increased in each mix ratio. Other properties of OPS concrete, namely, modulus of rupture, modulus of elasticity, splitting tensile strength, and density, were also determined and compared to the corresponding properties of conventional concrete. Economic analysis also indicates possible cost reduction of up to 15% due to the use of OPS as coarse aggregate. Finally, it is concluded that the use of OPS has great potential in the production of structural lightweight concrete. 1. Introduction Malaysia is well known as one of the world’s largest producers and exporters of palm oil. Palm kernel shells are a product of oil palm tree which are available in Malaysia in large quantity. Presently, 4.49 million hectares of land in Malaysia is under oil palm cultivation, producing over 17.73 million tonnes of palm oil and 2.13 tonnes of palm kernel oil annually, accounting for the biggest share of the global export market to date and yielding nearly about 18.9 tonnes/hectare of fresh fruit bunch (FFB) [1]. In the process of manufacturing oil palm, solid residues and liquid wastes are generated in the oil palm industry. These include empty fruit bunch (EFB), OPS, pericarp, and palm oil mill effluent (POME). Palm oil mills have different processing capacities of oil palm fresh fruit bunch (FFB) ranging from 20 to 90 tonnes per hour [2]. In Malaysia, there is an annual production of over 4 million tonnes of oil palm shell solid wastes [3, 4]. OPS are not commonly used in the construction industry but are often damped as agricultural wastes [5]. However, with the quest for affordable housing system for both the rural and urban populations of Malaysia and other developing countries, various proposals focusing on cutting down conventional building material costs have been considered. In countries where abundant agricultural
References
[1]
MPOB, “Malaysian Palm Oil Board (MPOB), Oil palm planted area in Malaysia,” 2009, http://www.mpoc.org.my/The_Oil_Palm_Tree.aspx.
[2]
V. Subramaniam, M. A. Ngan, C. Y. May, and N. M. N. Sulaiman, “Environmental performance of the milling process Of Malaysian palm oil using the life cycle assessment approach,” American Journal of Environmental Sciences, vol. 4, no. 4, pp. 6–12, 2008.
[3]
D. C. L. Teo, M. A. Mannan, and J. V. Kurian, “Flexural Behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS),” Journal of Advanced Concrete Technology, vol. 4, no. 3, pp. 1–10, 2006.
[4]
D. C. L. Teo, M. A. Mannan, and V. J. Kurian, “Structural concrete using Oil Palm Shell (OPS) as lightweight aggregate,” Turkish Journal of Engineering and Environmental Sciences, vol. 30, pp. 1–7, 2006.
[5]
Y. J. Kim, J. Hu, S. J. Lee, and B. H. You, “Mechanical properties of fiber reinforced lightweight concrete containing surfactant,” Advances in Civil Engineering, vol. 2010, Article ID 549642, 8 pages, 2010.
[6]
M. A. Mannan and C. Ganapathy, “Engineering properties of concrete with oil palm shell as coarse aggregate,” Construction and Building Materials, vol. 16, no. 1, pp. 29–34, 2002.
[7]
V. Corinaldesi, “Structural concrete prepared with coarse recycled concrete aggregate: from investigation to design,” Advances in Civil Engineering, vol. 2011, Article ID 283984, 6 pages, 2011.
[8]
D. C. L. Teo, M. A. Mannan, V. J. Kurian, and C. Ganapathy, “Lightweight concrete made from oil palm shell (OPS): structural bond and durability properties,” Building and Environment, vol. 42, no. 7, pp. 2614–2621, 2007.
[9]
S. A. Mirza, “Examination of strength modeling reliability of physical tests on structural concrete columns,” Advances in Civil Engineering, vol. 2011, Article ID 428367, 16 pages, 2011.
[10]
S. Talukdar, S. T. Islam, and N. Banthia, “Development of a lightweight low-carbon footprint concrete containing recycled waste materials,” Advances in Civil Engineering, vol. 2011, Article ID 594270, 8 pages, 2011.
[11]
ASTM C 330, “Standard specification for lightweight aggregate for structural concrete,” Annual Book of ASTM Standards.
[12]
M. A. Mannan, J. Alexander, C. Ganapathy, and D. C. L. Teo, “Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete,” Building and Environment, vol. 41, no. 9, pp. 1239–1242, 2006.
[13]
P. Shafigh, M. Z. Jumaat, and H. Mahmud, “Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: a review,” International Journal of Physical Sciences, vol. 5, no. 14, pp. 2127–2134, 2010.
[14]
M. Abdullahi, H. M. A. Al-Mattarneh, A. H. A. Hassan, M. H. Hassan, and B. S. Mohammed, “Trial mix design methodology for Palm Oil Clinker (POC) concrete,” in The International Conference on Construction and Building Technology in Kuala Lumpur, Kuala Lumpur, Malaysia, June 2008.
[15]
ASTM C 469-87a, “Standard test methods for static modulus of elasticity and poisson ration of concrete in compression,” Annual Book of ASTM Standards.
[16]
ASTM C 469-90, “Standard test methods for splitting tensile strength of cylinder concrete specimens,” Annual Book of ASTM Standards.
[17]
ASTM C 78-84, “Standard test method for flexural strength of concrete,” Annual Book of ASTM Standards.
[18]
BS 8110, Structural Use of Concrete. Code of Practice For Design and Construction, British Standard Institution, London, UK, 1881.
[19]
A. M. Neville, Properties of Concrete, Addison Wesley Longman Ltd, Essex, England, 4th edition, 1995.
[20]
M. G. Alexander and T. I. Milne, “ACI Materials J,” Tech. Rep. 92-M24, 1995.