全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Records of Atypical Coral Reef Habitat in the Kimberley, Australia

DOI: 10.1155/2013/363894

Full-Text   Cite this paper   Add to My Lib

Abstract:

New surveys of the Kimberley Nearshore Bioregion are beginning to fill knowledge gaps about the region’s marine biodiversity and the national and international conservation significance of this little-known tropical reef system. Here we report the recent finding of two unique coral habitats documented at Adele Island and Long Reef during the Woodside 2009/2010 Collection Project surveys. Firstly, we report the finding of a subtidal zone of mixed corallith and rhodolith habitat which appears on current records, to be unprecedented in Australia. Secondly, we report the discovery of an atypical Organ Pipe Coral habitat zone and provide empirical evidence that this commercially valuable species reaches an unparalleled level of benthic cover. We provide additional details about the wider hard and soft coral assemblages associated with these unique habitats; discuss the potential biological causes and consequences of them, and make recommendations to benefit their conservation. 1. Introduction Around the globe, most tropical reef locations have been the focus of at least some scientific studies. One of the last regions of shallow-water reef remaining to be explored is the Kimberley (north-west Australia). Renowned for huge tidal exchanges up to 11?m, frequent cyclones and crocodiles, this region has experienced little reef-based research apart from a series of biodiversity surveys conducted by the Western Australian Museum in the 1990s. Despite the growing public and industrial interest in this frontier region, the diversity of the tropical Kimberley reefs remains largely unknown, even at the coarse habitat level. Geomorphological surveys of reef development in Western Australia suggest that reefs in the Kimberley coastal bioregion are uniquely characterized by the development of Holocene accretionary veneers of coral-algal limestone (>12,000 years old) on a Proterozoic basement (2,500–543 million years old) [1]. Neighbouring reefs on the north-west shelf (i.e., within the Western Pilbara and West Coast Bioregions) have origins in the Pleistocene (25 million–12,000 years ago). Thus, contemporary reefs in the Kimberley appear to have more recent origins than others in Western Australia; however, the extent to which the difference in age translates to compositional differences between reefs remains to be resolved. Along the Kimberley continental edge, there is extensive development of oceanic reefs. The offshore reefs (such as Ashmore, Cartier, and Scott Reefs) have been extensively surveyed as part of National and Regional management plans [2–9] and contain a

References

[1]  B. Brooke, “Geomorphology,” in Marine Biological Survey of the Southern Kimberley, Western Australia, F. E. Wells, J. R. Hanley, and D. I. Walker, Eds., pp. 21–51, Western Australian Museum, Perth, Australia, 1995.
[2]  J. K. Griffith, “The corals collected during September/October 1997 at Ashmore Reef, Timor Sea,” A Report to Parks Australia, Western Australian Museum, Perth, Australia, 1997.
[3]  M. Kospartov, M. Beger, D. Ceccarelli, and Z. Richards, An Assessment of the Distribution and Abundance of Sea Cucumbers, Trochus, Giant Clams, Coral, Fish and Invasive Marine Species at Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve: 2005, UniQuest Pty Limited, DEWHA, 2006.
[4]  D. Cecarelli, M. Kospartov, M. Beger, Z. Richards, and C. Birrell, An Assessment of the Impacts of Illegal Fishing on Invertebrate Stocks at Ashmore Reef National Nature Reserve, 2006, C & R Consulting, DEWHA, 2007.
[5]  P. F. Berry, Ed., Faunal Surveys of the Rowley Shoals, Scott Reef, and Seringapatam Reef, North-Western Australia, vol. 25 of Records of the Western Australian Museum Supplement, Western Australian Museum, Perth, Australia, 1986.
[6]  P. F. Berry, Ed., Marine Faunal Surveys of Ashmore Reef and Cartier Island, North-Western Australia, vol. 44 of Records of the Western Australian Museum Series, Western Australian Museum, Perth, Australia, 1993.
[7]  C. Bryce, Marine Biodiversity Survey of Mermaid Reef (Rowley Shoals), Scott and Seringapatam Reef, vol. 77 of Records of the Western Australian Museum Supplement, Western Australian Museum, Perth, Australia, 2009.
[8]  K. Fabricius, “A brief photo guide to the shallow-water octocorals of the Rowley Shoals, Western Australia,” Report, Department of Environment and Conservation, Government of Western Australia, 2008.
[9]  Z. Richards, M. Beger, J. P. Hobbs, T. Bowling, K. Chong-seng, and M. Pratchett, “Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve Marine Survey 2009,” ARC Centre of Excellence for Coral Reef Studies, Department of the Environment, Water, Heritage and the Arts, 2009.
[10]  R. Thackway and I. D. Cresswell, Interim Marine and Coastal Regionalisation for Australia: An Ecosystem-Based Classification for Marine and Coastal Environments, Environment Australia, Canberra, Australia, 1998.
[11]  M. Wood and D. Mills, A Turning of the Tide: Science for Decisions in the Kimberley-Browse Marine Region, A Western Australian Marine Science Institution (WAMSI), Perth, Australia, 2008.
[12]  J. E. N. Veron and L. M. Marsh, Hermatypic Corals of Western Australia: Records and Annotated Species List, vol. 29 of Records of the Western Australian Museum, Western Australian Museum, Perth, Australia, 1988.
[13]  C. Teichert and R. W. Fairbridge, “Some coral reefs of the Sahul Shelf,” Geographical Review, vol. 28, no. 2, pp. 222–249, 1948.
[14]  B. R. Wilson, The Biogeography of the Australian North West Shelf, Elsevier, New York, NY, USA, 2013.
[15]  B. Wilson and S. Blake, “Notes on the origins and biogeomorphology of Montgomery Reef, Kimberley, Western Australia,” Journal of the Royal Society of Western Australia, vol. 94, pp. 107–119, 2011.
[16]  Z. T. Richards, A. Sampey, and L. Marsh, “Synthesis of historic marine species data for the Kimberley, Western Australia (1880s–2009): hard corals,” Records of the Western Australian Museum. In press.
[17]  M. Weber, Introduction et description de l’Expedition, Mongraph no. 1, Siboga-Expeditie, 1902.
[18]  P. D. Taylor and D. N. Lewis, Fossil Invertebrates, Natural History Museum, London, UK, 2005.
[19]  P. W. Glynn, “Rolling stones amongst the scleractinia: mobile coralliths in the Gulf of Panama,” in Proceedings of the 2nd International Coral Reef Symposium, vol. 2, pp. 183–198, 1974.
[20]  M. Pichon, “Free-living scleractinian coral communities in the coral reefs of Madagascar,” in Proceedings of the 2nd International Coral Reef Symposium, vol. 2, pp. 173–181, 1974.
[21]  T. P. Scoffin, D. R. Stoddart, A. W. Tudhope, and C. Woodroffe, “Rhodoliths and coralliths of Muri Lagoon, Rarotonga, Cook Islands,” Coral Reefs, vol. 4, no. 2, pp. 71–80, 1985.
[22]  J. B. Lewis, “Spherical growth in the Caribbean coral Siderastrea radians (Pallas) and its survival in disturbed habitats,” Coral Reefs, vol. 7, no. 4, pp. 161–167, 1989.
[23]  M. R. Claereboudt, “Porites decasepta: a new species of scleractinian coral (Scleractinia, Poritidae) from Oman,” Zootaxa, no. 1188, pp. 55–62, 2006.
[24]  P. W. Glynn and G. M. Wellington, Corals and Coral Reefs of the Galapagos Islands, University of California Press, Berkeley, Calif, USA, 1983.
[25]  H. Reyes-Bonilla, R. Riosmena-Rodriguez, and M. S. Foster, “Hermatypic corals associated with rhodolith beds in the Gulf of California, México,” Pacific Science, vol. 51, no. 3, pp. 328–337, 1997.
[26]  G. Roff, “Corals on the move: morphological and reproductive strategies of reef flat coralliths,” Coral Reefs, vol. 27, no. 2, pp. 343–344, 2008.
[27]  J. E. N. Veron, Re-Examination of the Reef Corals of Cocos (Keeling), vol. 14, Records of the Western Australian Museum, Western Australian Museum, Perth, Australia edition, 1990.
[28]  M. S. Foster, “Rhodoliths: between rocks and soft places,” Journal of Phycology, vol. 37, no. 5, pp. 659–667, 2001.
[29]  B. Konar, R. Riosmena-Rodriguez, and K. Iken, “Rhodolith bed: a newly discovered habitat in the North Pacific Ocean,” Botanica Marina, vol. 49, no. 4, pp. 355–359, 2006.
[30]  M. Kempf, “Notes of the benthic bionomy of the N-NE Brazilian shelf,” Marine Biology, vol. 5, no. 3, pp. 213–224, 1970.
[31]  G. M. Amado-Filho, G. Maneveldt, R. C. C. Manso, B. V. Marins-Rosa, M. R. Pacheco, and S. M. P. B. Guimar?es, “Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil,” Ciencias Marinas, vol. 33, no. 4, pp. 399–410, 2007.
[32]  G. B. Baarli, M. Cachao, C. M. da Silva, M. E. Johnson, J. Ledesma-Vazquez, and A. M. E. Santos, “Fossil nodules of free living biota from the upper Pleistocene Mulegé formation, Playa La Palmita, Baja California Sur, Mexico,” Publicaciones del Seminario de Paleontología de Zaragoza, vol. 9, pp. 75–78, 2010.
[33]  C. Barbera, C. Bordehore, J. A. Borg, M. Glémarec, et al., “Conservation and management of northeast Atlantic and Mediterranean maerl beds,” Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 13, no. 1, pp. S65–S76, 2003.
[34]  G. Hinojosa-Arango and R. Riosèmena-Rodríguez, “Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the Central-West gulf of California, México,” Marine Ecology, vol. 25, no. 2, pp. 109–127, 2004.
[35]  J. Hall-Spencer, J. Kelly, and C. A. Maggs, Assessment of Maerl Beds in the OSPAR Area and the Development of a Monitoring Program, Department of Environment, Heritage and Local Government, Dublin, Ireland, 2008.
[36]  N. Goldberg, “Age estimates and description of rhodoliths from Esperance Bay, Western Australia,” Journal of the Marine Biological Association of the United Kingdom, vol. 86, no. 6, pp. 1291–1296, 2006.
[37]  A. S. Harvey and F. L. Bird, “Community structure of a rhodolith bed from cold-temperate waters (Southern Australia),” Australian Journal of Botany, vol. 56, no. 5, pp. 437–450, 2008.
[38]  M. Lund, P. J. Davies, and J. C. Braga, “Coralline algal nodules off Fraser Island, Eastern Australia,” Facies, no. 42, pp. 25–34, 2000.
[39]  B. Wilson, S. Blake, D. Ryan, and J. Hacker, “Reconnaissance of species-rich coral reefs in a muddy, macro-tidal enclosed embayment —Talbot Bay, Kimberley, Western Australia,” Journal of the Royal Society of Western Australia, vol. 94, pp. 251–165, 2011.
[40]  M. S. Foster, R. Riosmena-Rodríguez, D. L. Steller, and W. J. Woelkerling, “Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation,” Geological Society of America Bulletin, vol. 318, pp. 127–139, 1997.
[41]  E. C. Marrack, “The relationship between water motion and living rhodolith beds in the Southwestern Gulf of California, Mexico,” Palaios, vol. 14, no. 2, pp. 159–171, 1999.
[42]  K. Fabricius and P. Alderslade, Soft Corals and Sea Fans—A Comprehensive Guide to the Tropical Shallow Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea, Australian Institute of Marine Science, Townsville, Australia, 2001.
[43]  J. E. N. Veron, Corals of the World, vol. 1–3, Australian Institute of Marine Science, 2000.
[44]  Y. Benayahu and Y. Loya, “Space partitioning by stony corals soft corals and benthic algae on the coral reefs of the Northern Gulf of Eilat (Red Sea),” Helgol?nder Wissenschaftliche Meeresuntersuchungen, vol. 30, no. 1–4, pp. 362–382, 1977.
[45]  J. Cvejic, S. Tambutte, S. Lotto, M. Mikov, I. Slacanin, and D. Allemand, “Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection,” Marine Biology, vol. 152, no. 4, pp. 855–862, 2007.
[46]  S. Hetzinger, J. Halfar, B. Riegl, and L. Godinez-Orta, “Sedimentology and acoustic mapping of modern rhodolith facies on a non-tropical carbonate shelf (Gulf of California, Mexico),” Journal of Sedimentary Research, vol. 76, no. 3-4, pp. 670–682, 2006.
[47]  N. A. Kamenos, P. G. Moore, and J. M. Hall-Spencer, “Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play?” ICES Journal of Marine Science, vol. 61, no. 3, pp. 422–429, 2004.
[48]  N. A. Kamenos, P. G. Moore, and J. M. Hall-Spencer, “Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates,” Marine Ecology Progress Series, vol. 274, pp. 183–189, 2004.
[49]  W. A. Nelson, “Calcified macroalgae critical to coastal ecosystems and vulnerable to change: a review,” Marine and Freshwater Research, vol. 60, no. 8, pp. 787–801, 2009.
[50]  A. Freiwald, R. Henrich, P. Sch?fer, and H. Willkomm, “The significance of high-boreal to subarctic maerl deposits in northern Norway to reconstruct holocene climatic changes and sea level oscillations,” Facies, vol. 25, no. 1, pp. 315–339, 1991.
[51]  C. E. Cintra-Buenrostro, M. S. Foster, and K. H. Meldahl, “Response of nearshore marine assemblages to global change: a comparison of molluscan assemblages in Pleistocene and modern rhodolith beds in the Southwestern Gulf of California, México,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 183, no. 3-4, pp. 299–320, 2002.
[52]  R. Nalin, C. S. Nelson, D. Basso, and F. Massari, “Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand,” Sedimentology, vol. 55, no. 2, pp. 249–274, 2008.
[53]  N. A. Kamenos, M. Cusack, and P. G. Moore, “Coralline algae are global palaeothermometers with bi-weekly resolution,” Geochimica et Cosmochimica Acta, vol. 72, no. 3, pp. 771–779, 2008.
[54]  S. Fox, “Reefs and shoals in Australia-Indonesian relations: traditional Indonesian fisherman,” in Australian in Asia: Episodes, A. C. Milner and M. Quilty, Eds., Oxford University Press, Melbourne, Australia, 1988.
[55]  N. Stacey, Boats to burn: bajo fishing in the Australian fishing zone [Ph.D. thesis], Northern Territory University, Commonwealth of Australia, 2002, Ashmore Reef National Nature Reserve and Cartier Island Marine Reserve Management Plans, Environment Australia, Canberra, Australia, 1999.
[56]  A. Rhyne, R. Rotjan, A. Bruckner, and M. Tlusty, “Crawling to collapse: ecologically unsound ornamental invertebrate fisheries,” PLoS ONE, vol. 4, no. 12, Article ID e8413, 2009.
[57]  D. Obura, D. Fenner, B. Hoeksema, L. Devantier, and C. Sheppard, “Tubipora musica,” in IUCN, 2012. IUCN Red List of Threatened Species: Version 2012. 2, 2008, http://www.iucnredlist.org/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133