The sessile suspension-feeding wormsnail Dendropoma maxima, Sowerby 1825 (Vermetidae) secretes a mucus net to capture planktonic prey. The nets are spread out over the corals and often have remarkable deleterious effects on them like changes in growth form and pigmentation shifts not uncommonly resulting in tissue necrosis. Until now, there is no explanation for this phenomenon although the indication as well as theories about its genesis is mentioned in several publications. Vermetids are well studied concerning the intraspecific competition with neighboring individuals but not in their interaction with other taxa like corals or fish. We did extensive in situ video recording and observed that fish avoided the plankton-load nets although several specialized taxa are known to be molluscivores, mucivores, and/or feed on plankton. As many molluscs use chemical weapons to combat feeding pressure and to defend themselves against predators, we screened empty and plankton-load mucus nets for potential bioactive metabolites. Bioactivity testing was performed with a recently developed system based on a chromatographic separation (high-performance thin-layer chromatography (HPTLC)) and a bioassay with luminescent bacteria Vibrio fischeri. Thus, we found at least two active compounds exclusively accumulated by the wormsnails themselves. This is the first record of bioactive properties in the whole family of Vermetidae. 1. Introduction The vermetid gastropod Dendropoma maxima, Sowerby 1825 (Vermetidae, Littorinimorpha, Gastropoda) is a dominant, very abundant encrusting species of outer tropical reefs and widespread throughout the IndoPacific [1–3]. In the Red Sea, D. maxima populations can attain substantial densities, a phenomenon largely restricted to that area [4, 5]. Wormsnails mainly live in the infralittoral and upper-circalittoral between the breaker zone and the outer reef edges facing the current [1, 2, 6]. To combat the competition for space and nutrients, wormsnails developed particularly strong substrate preferences. In the Red Sea, substrates are living corals like hydrozoan Millepora spp. (Figure 1(a)) and Porites spp., dead coral rock next to the reef edge, or they can be found on the nonliving reef flat substratum [2, 7]. Figure 1: Deleterious effects of the vermetid gastropod Dendropoma maxima on associated corals. Several individuals growing inside the hydrozoan fire coral Millepora platyphylla that minimizes the contact area between coral tissue and nets because of its erected and branching growth form (a). Morphology and pigmentation shift of
References
[1]
A. Zvuloni, R. Armoza-Zvuloni, and Y. Loya, “Structural deformation of branching corals associated with the vermetid gastropod Dendropoma maxima,” Marine Ecology Progress Series, vol. 363, pp. 103–108, 2008.
[2]
R. N. Hughes and A. H. Lewis, “On the spatial distribution, feeding, and reproduction of the vermetid gastropod Dendropoma maximum,” Journal of Zoology, vol. 172, pp. 531–547, 1974.
[3]
M. G. Hadfield, E. A. Kay, M. U. Gillette, and M. C. Lloyd, “The vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands,” Marine Biology, vol. 12, no. 1, pp. 81–98, 1972.
[4]
M. Zuschin and W. E. Piller, “Molluscan hard-substrate associations in the northern Red Sea,” Marine Ecology, vol. 18, no. 4, pp. 361–378, 1997.
[5]
N. E. Phillips and J. S. Shima, “Reproduction of the vermetid gastropod dendropoma maximum (Sowerby, 1825) in moorea, french polynesia,” Journal of Molluscan Studies, vol. 76, no. 2, pp. 133–137, 2010.
[6]
G. Ribak, J. Heller, and A. Genin, “Mucus-net feeding on organic particles by the vermetid gastropod Dendropoma maximum in and below the surf zone,” Marine Ecology Progress Series, vol. 293, pp. 77–87, 2005.
[7]
M. Zuschin and M. Stachowitsch, “The distribution of molluscan assemblages and their postmortem fate on coral reefs in the gulf of aqaba (northern red sea),” Marine Biology, vol. 151, no. 6, pp. 2217–2230, 2007.
[8]
I. Kappner, S. M. Al-Moghrabi, and C. Richter, “Mucus-net feeding by the vermetid gastropod Dendropoma maxima in coral reefs,” Marine Ecology Progress Series, vol. 204, pp. 309–313, 2000.
[9]
T. L. Smalley, “Possible effects of intraspecific competition on the population structure of a solitary vermetid mollusc,” Marine Ecology Progress Series, vol. 14, pp. 139–144, 1984.
[10]
R. Hughes, “Feeding behaviour of the sessile gastropod Tripsycha tulipa (Vermetidae),” Journal of Molluscan Studies, vol. 51, pp. 326–330, 1985.
[11]
A. Gagern, T. Schürg, N. K. Michiels, G. Schulte, D. Sprenger, and N. Anthes, “Behavioural response to interference competition in a sessile suspension feeder,” Marine Ecology Progress Series, vol. 353, pp. 131–135, 2008.
[12]
C. R. Boettger, “Studien zur Physiologie der Nahrungsaufnahme festgewachsener Schnecken. Die Ern?hrung der Wurmschnecke Vermetus,” Biologisches Zentralblatt, pp. 581–598, 1930.
[13]
J. S. Shima, C. W. Osenberg, and A. C. Stier, “The vermetid gastropod Dendropoma maximum reduces coral growth and survival,” Biology Letters, vol. 6, no. 6, pp. 815–818, 2010.
[14]
J. E. Morton, “Form and function in the evolution of the Vermetidae,” Bulletin of the British Museum (Natural History). Zoology, vol. 2, pp. 585–630, 1965.
[15]
N. E. Chadwick and K. M. Morrow, “Competition among sessile organisms on coral reefs,” in Coral Reefs: An Ecosystem in Transition, Z. Dubinsky and N. Stambler, Eds., pp. 347–372, US Government, 2011.
[16]
A. C. Stier, C. S. McKeon, C. W. Osenberg, and J. S. Shima, “Guard crabs alleviate deleterious effects of vermetid snails on a branching coral,” Coral Reefs, vol. 29, no. 4, pp. 1019–1022, 2010.
[17]
R. H. Lowe-McConnell, Fish Communities in Tropical Freshwaters, Longman Press, London, UK, 1975.
[18]
P. A. Larkin, “Interspecific competition and population control in freshwater fish,” Journal of the Fisheries Research Board of Canada, vol. 13, pp. 327–342, 1956.
[19]
S. L. Coles and R. Strathmann, “Observations on coral mucus “flocs” and their potential trophic significance,” Limnology and Oceanography, vol. 18, pp. 673–678, 1973.
[20]
M. L. Harmelin-Vivien and Y. Bouchon-Navaro, “Feeding diets and significance of coral feeding among Chaetodontid fishes in Moorea (French Polynesia),” Coral Reefs, vol. 2, no. 2, pp. 119–127, 1983.
[21]
V. DiMarzo, A. Marin, R. R. Vardaro, L. DePetrocellis, G. Villani, and G. Cimino, “Histological and biochemical bases of defense mechanisms in four species of Polybranchioidea ascoglossan molluscs,” Marine Biology, vol. 117, no. 3, pp. 367–380, 1993.
[22]
G. Cimino, S. De Rosa, S. De Stefano, and G. Sodano, “The chemical defense of four Mediterranean nudibranchs,” Comparative Biochemistry and Physiology Part B, vol. 73, no. 3, pp. 471–474, 1982.
[23]
C. D. Derby, “Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms,” Biological Bulletin, vol. 213, no. 3, pp. 274–289, 2007.
[24]
J. W. Blunt, B. R. Copp, M. H. G. Munro, P. T. Northcote, and M. R. Prinsep, “Marine natural products,” Natural Product Reports, vol. 28, no. 2, pp. 196–268, 2011.
[25]
M. S. Davies and S. J. Hawkins, “Mucus from marine molluscs,” Advances in Marine Biology, no. 34, pp. 1–71, 1998.
[26]
T. E. Thompson, “Defensive adaptations on opisthobranchs,” Journal of the Marine Biological Association of the United Kingdom, vol. 39, pp. 123–134, 1960.
[27]
J. R. Pawlik, “Marine invertebrate chemical defenses,” Chemical Reviews, vol. 93, no. 5, pp. 1911–1922, 1993.
[28]
L. Gunthorpe and A. M. Cameron, “Bioactive properties of extracts from Australian dorid nudibranchs,” Marine Biology, vol. 94, no. 1, pp. 39–43, 1987.
[29]
G. Cimino, A. Fontana, and M. Gavagnin, “Marine opisthobranch molluscs: chemistry and ecology in sacoglossans and dorids,” Current Organic Chemistry, vol. 3, no. 4, pp. 327–372, 1999.
[30]
C. Avila, “Natural products of opisthobranch molluscs: a biological review,” Oceanography and Marine Biology: An Annual Review, vol. 33, pp. 487–559, 1995.
[31]
G. Cimino, A. Crispino, V. Di Marzo, M. Gavagnin, and J. D. Ros, “Oxytoxins, bioactive molecules produced by the marine opisthobranch mollusc Oxynoe olivacea from a diet-derived precursor,” Experientia, vol. 46, no. 7, pp. 767–770, 1990.
[32]
G. J. Bakus, N. M. Targett, and B. Schulte, “Chemical ecology of marine organisms: an overview,” Journal of Chemical Ecology, vol. 12, no. 5, pp. 951–987, 1986.
[33]
D. Bhakuni and D. Rawat, Bioactive Marine Natural Products, Anamaya, New Delhi, India, 2005.
[34]
N. Fusetani, Drugs from the Sea, Karger, Basel, Switzerland, 2000.
[35]
P. Proksch, R. Ebel, R. A. Edrada, V. Wray, and K. Steube, “Bioactive natural products from marine invertebrates and associated fungi,” in Sponges (Porifera), W. E. G. Müller, Ed., pp. 117–142, Springer, Berlin, Germany, 2003.
[36]
D. J. Newman and G. M. Cragg, “Marine natural products and related compounds in clinical and advanced preclinical trials,” Journal of Natural Products, vol. 67, no. 8, pp. 1216–1238, 2004.
[37]
P. Proksch and W. E. G. Muller, Frontiers in Marine Biotechnology, Horizon Bioscience, Wymondham, UK, 2006.
[38]
A. M. S. Mayer, K. B. Glaser, C. Cuevas et al., “The odyssey of marine pharmaceuticals: a current pipeline perspective,” Trends in Pharmacological Sciences, vol. 31, no. 6, pp. 255–265, 2010.
[39]
A. Kl?ppel, W. Grasse, F. Brümmer, and G. E. Morlock, “HPTLC coupled with bioluminescence and mass spectrometry for bioactivity-based analysis of secondary metabolites in marine sponges,” Journal of Planar Chromatography, vol. 21, no. 6, pp. 431–436, 2008.
[40]
E. Lieske and R. Myers, Coral Reef Guide Red Sea, Franckh-Kosmos Verlags, GmbH & Co. KG, Stuttgart, Germany, 2004.
[41]
R. Froese and D. Pauly, “FishBase. World Wide Web electronic publication. Version (04/2013),” 2013, http://www.fishbase.org/search.php.
[42]
C. M. Yonge, Notes on Feeding and Digestion in Pterocera and Vermetus, with a Discussion on the Occurence of the Crystalline Style in the Gastropoda, vol. 1 of Great Barrier Reef Expedition 1928–1929, Scientific Report, 1932.
[43]
A. A. Benson and L. Muscatine, “Wax in coral mucus: energy transfer from corals to reef fishes,” Limnology and Oceanography, vol. 19, pp. 810–814, 1974.
[44]
D. L. Gorlick, “Ingestion of host fish surface mucus by the Hawaiian cleaning wrasse, Labroides phthirophagus (Labridae), and its effect on host species preference,” Copeia, vol. 4, pp. 863–868, 1980.
[45]
A. J. Cole, M. S. Pratchett, and G. P. Jones, “Diversity and functional importance of coral-feeding fishes on tropical coral reefs,” Fish and Fisheries, vol. 9, no. 3, pp. 286–307, 2008.
[46]
K. O. Winemiller and H. Y. Yan, “Obligate mucus-feeding in a South American trichomycterid catfish (Pisces: Ostariophysi),” Copeia, vol. 2, pp. 511–514, 1989.
[47]
H. W. Ducklow and R. Mitchell, “Composition of mucus released by coral reef coelenterates,” Limnology and Oceanography, vol. 24, pp. 706–714, 1979.
[48]
A. S. Grutter and R. Bshary, “Cleaner fish, Labroides dimidiatus, diet preferences for different types of mucus and parasitic gnathiid isopods,” Animal Behaviour, vol. 68, no. 3, pp. 583–588, 2004.
[49]
R. E. Johannes, “Ecology of organic aggregates in the vicinity of a coral reef,” Limnology and Oceanography, vol. 12, pp. 189–195, 1967.
[50]
S. Richman, Y. Loya, and L. B. Slobodkin, “The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens,” Limnology and Oceanography, vol. 20, pp. 918–923, 1975.
[51]
D. Fenner, “Is a mollusc that scupltures coral a parasite?” in Proceedings of the 82nd Australian Coral Reef Society Conference, Mission Beach, Australia, 2006.