Aerial survey provides an important tool to assess the abundance of both terrestrial and marine vertebrates. To date, limited work has tested the effectiveness of this technique to estimate the abundance of smaller shark species. In Bimini, Bahamas, the lemon shark (Negaprion brevirostris) shows high site fidelity to a shallow sandy lagoon, providing an ideal test species to determine the effectiveness of localised aerial survey techniques for a Carcharhinid species in shallow subtropical waters. Between September 2007 and September 2008, visual surveys were conducted from light aircraft following defined transects ranging in length between 8.8 and 4.4?km. Count results were corrected for “availability”, “perception”, and “survey intensity” to provide unbiased abundance estimates. The abundance of lemon sharks was greatest in the central area of the lagoon during high tide, with a change in abundance distribution to the east and western regions of the lagoon with low tide. Mean abundance of sharks was estimated at 49 (±8.6) individuals, and monthly abundance was significantly positively correlated with mean water temperature. The successful implementation of the aerial survey technique highlighted the potential of further employment for shark abundance assessments in shallow coastal marine environments. 1. Introduction Aerial survey has been used as a tool to assess species abundance for both terrestrial and marine vertebrates, often where the remoteness or vastness of the survey area and the potentially low abundance of the study species render other techniques uneconomical [1–6]. In the marine environment, aerial survey has typically focused on air breathing marine mammals and reptiles [2, 7–13] because these taxa are regularly visible at the surface. Through aerial surveys, it has been possible to quantify the abundance of marine creatures in remote locations. A few examples of these are dense concentrations of narwhal (Monodon monoceros) in the offshore pack ice of Baffin Bay, West Greenland [14] and the seasonal distribution of crabeater seals (Lobodon carcinophagus) in the pack ice of Antarctica [15]. In addition, aerial surveys have revealed unique insights into marine creatures, for example, the specific birthing location of an endangered western North Atlantic right whale (Eubalaena glacialis) [16] and mass aggregations of whale sharks (Rhincodon typus), numbering up to 420 individuals, previously not witnessed [17]. For sharks, aerial survey has been largely limited to the large filter feeding species, whale [18–20] and basking sharks
References
[1]
H. Marsh and W. K. Saalfeld, “Aerial surveys of sea turtles in the northern Great Barrier Reef Marine Park,” Australian Wildlife Research, vol. 16, no. 3, pp. 239–249, 1989.
[2]
E. Slooten, S. M. Dawson, and W. J. Rayment, “Aerial surveys for coastal dolphins: abundance of Hector's dolphins off the South Island west coast, New Zealand,” Marine Mammal Science, vol. 20, no. 3, pp. 477–490, 2004.
[3]
H. Marsh and D. F. Sinclair, “Correcting for visibility bias in strip transect aerial surveys of aquatic fauna,” Journal of Wildlife Management, vol. 53, no. 4, pp. 1017–1024, 1989.
[4]
G. P. Edwards, K. Saalfeld, and B. Clifford, “Population trend of feral camels in the Northern Territory, Australia,” Wildlife Research, vol. 31, no. 5, pp. 509–517, 2004.
[5]
S. D. Miller, R. P. Reading, B. Haskins, and D. Stern, “Overestimation bias in estimate of black-tailed prairie dog abundance in Colorado,” Wildlife Society Bulletin, vol. 33, no. 4, pp. 1444–1451, 2005.
[6]
R. M. Fewster and A. R. Pople, “A comparison of mark-recapture distance-sampling methods applied to aerial surveys of eastern grey kangaroos,” Wildlife Research, vol. 35, no. 4, pp. 320–330, 2008.
[7]
L. Cardona, M. Revelles, C. Carreras, M. San Félix, M. Gazo, and A. Aguilar, “Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys,” Marine Biology, vol. 147, no. 3, pp. 583–591, 2005.
[8]
B. A. Craig and J. E. Reynolds III, “Determination of manatee population trends along the Atlantic coast of Florida using a Bayesian approach: with temperature-adjusted aerial survey data,” Marine Mammal Science, vol. 20, no. 3, pp. 386–400, 2004.
[9]
H. H. Edwards, K. H. Pollock, B. B. Ackerman, J. E. Reynolds III, and J. A. Powell, “Estimation of detection probability in manatee aerial surveys at a winter aggregation site,” Journal of Wildlife Management, vol. 71, no. 6, pp. 2052–2060, 2007.
[10]
K. H. Pollock, H. D. Marsh, I. R. Lawler, and M. W. Alldredge, “Estimating animal abundance in heterogeneous environments: an application to aerial surveys for dugongs,” Journal of Wildlife Management, vol. 70, no. 1, pp. 255–262, 2006.
[11]
D. Roos, D. Pelletier, S. Ciccione, M. Taquet, and G. Hughes, “Aerial and snorkelling census techniques for estimating green turtle abundance on foraging areas: a pilot study in Mayotte Island (Indian Ocean),” Aquatic Living Resources, vol. 18, no. 2, pp. 193–198, 2005.
[12]
A.-B. Salberg, T. A. O?ig?rd, G. B. Stenson, T. Haug, and K. T. Nilssen, “Estimation of seal pup production from aerial surveys using generalized additive models,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 66, no. 5, pp. 847–858, 2009.
[13]
M. J. Witt, B. Baert, A. C. Broderick et al., “Aerial surveying of the world's largest leatherback turtle rookery: a more effective methodology for large-scale monitoring,” Biological Conservation, vol. 142, no. 8, pp. 1719–1727, 2009.
[14]
K. L. Laidre and M. P. Heide-J?rgensen, “Life in the lead: extreme densities of narwhals Monodon monoceros in the offshore pack ice,” Marine Ecology Progress Series, vol. 423, pp. 269–278, 2011.
[15]
M. N. Bester, A. W. Erickson, and J. W. Ferguson, “Seasonal change in the distribution and density of seals in the pack ice off Princess Martha Coast, Antarctica,” Antarctic Science, vol. 7, no. 4, pp. 357–364, 1995.
[16]
H. J. Foley, R. C. Holt, R. E. Hardee et al., “Observations of a western North Atlantic right whale (Eubalaena glacialis) birth offshore of the protected southeast U.S. critical habitat,” Marine Mammal Science, vol. 27, no. 3, pp. E234–E240, 2011.
[17]
R. de la Parra Venegas, R. Hueter, J. G. Cano et al., “An unprecedented aggregation of whale sharks, Rhincodon typus, in Mexican coastal waters of the Caribbean sea,” PLoS ONE, vol. 6, no. 4, Article ID e18994, 2011.
[18]
D. Rowat, M. Gore, M. G. Meekan, I. R. Lawler, and C. J. A. Bradshaw, “Aerial survey as a tool to estimate whale shark abundance trends,” Journal of Experimental Marine Biology and Ecology, vol. 368, no. 1, pp. 1–8, 2009.
[19]
G. Cliff, M. D. Anderson-Reade, A. P. Aitken, G. E. Charter, and V. M. Peddemors, “Aerial census of whale sharks (Rhincodon typus) on the northern KwaZulu-Natal coast, South Africa,” Fisheries Research, vol. 84, no. 1, pp. 41–46, 2007.
[20]
J. C. Sleeman, M. G. Meekan, S. G. Wilson et al., “Biophysical correlates of relative abundances of marine megafauna at Ningaloo Reef, Western Australia,” Marine and Freshwater Research, vol. 58, no. 7, pp. 608–623, 2007.
[21]
D. W. Sims, E. J. Southall, G. A. Tarling, and J. D. Metcalfe, “Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark,” Journal of Animal Ecology, vol. 74, no. 4, pp. 755–761, 2005.
[22]
S. G. Wilson, “Basking sharks (Cetorhinus maximus) schooling in the southern Gulf of Maine,” Fisheries Oceanography, vol. 13, no. 4, pp. 283–286, 2004.
[23]
L. F. Sundstr?m, S. H. Gruber, S. M. Clermont et al., “Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas,” Environmental Biology of Fishes, vol. 60, no. 1-3, pp. 225–250, 2001.
[24]
K. N. Holland, B. M. Wetherbee, C. G. Lowe, and C. G. Meyer, “Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters,” Marine Biology, vol. 134, no. 4, pp. 665–673, 1999.
[25]
D. D. Chapman, E. K. Pikitch, E. A. Babcock, and M. S. Shivji, “Deep-diving and diel changes in vertical habitat use by Caribbean reef sharks Carcharhinus perezi,” Marine Ecology Progress Series, vol. 344, pp. 271–275, 2007.
[26]
R. D. Jennings, “Seasonal Abundance of Hammerhead Sharks off Cape Canaveral, Florida,” Copeia, vol. 1985, no. 1, pp. 223–225, 1985.
[27]
R. D. Kenney, R. E. Owen, and H. E. Winn, “Shark distributions off the Northeast United States from marine mammal surveys,” Copeia, vol. 1985, no. 1, pp. 220–223, 1985.
[28]
S. H. Gruber, D. R. Nelson, and J. F. Morrissey, “Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon,” Bulletin of Marine Science, vol. 43, no. 1, pp. 61–76, 1988.
[29]
E. A. Reyier, D. H. Adams, and R. H. Lowers, “First evidence of a high density nursery ground for the lemon shark, Negaprion brevirostris, near Cape Canaveral, Florida,” Florida Scientist, vol. 71, no. 2, pp. 134–148, 2008.
[30]
M. L. Dicken and A. J. Booth, “Surveys of white sharks (Carcharodon carcharias) off bathing beaches in Algoa Bay, South Africa,” Marine and Freshwater Research, vol. 64, no. 6, pp. 530–539, 2013.
C. A. Brown and S. H. Gruber, “Age assessment of the lemon shark, Negaprion brevirostris, using tetracycline validated vertebral centra,” Copeia, no. 3, pp. 747–753, 1988.
[33]
S. H. Gruber, C. A. Brown, and A. D. Henningsen, “Age and growth of the lemon shark, Negaprion brevirostris (poey), as determined by mark recapture data and the examination of tetracycline labelled vertebral centra,” American Zoologist, vol. 25, no. 4, pp. A106–A106, 1985.
[34]
S. H. Gruber, “Role of the lemon shark, Negaprion brevirostris (Poey) as a predator in the tropical marine environment: a multidisciplinary study,” Florida Scientist, vol. 45, no. 1, pp. 46–75, 1982.
[35]
L. J. V. Compagno, Sharks of the Order Carcharhiniforms, Priceton University Press, Princeton, NJ, USA, 1988.
[36]
B. M. Wetherbee, S. H. Gruber, and E. Cortes, “Diet, feeding habits, digestion and consumption in sharks with special reference to the lemon shark Negaprion brevirostris,” NOAA Technical Report NMFS, no. 90, pp. 29–48, 1990.
[37]
J. F. Morrissey and S. H. Gruber, “Habitat selection by juvenile lemon sharks, Negaprion brevirostris,” Environmental Biology of Fishes, vol. 38, no. 4, pp. 311–319, 1993.
[38]
J. F. Morrissey and S. H. Gruber, “Habitat selection by juvenile lemon sharks, Negaprion brevirostris,” Environmental Biology of Fishes, vol. 38, no. 4, pp. 311–319, 1993.
[39]
E. Cortes and S. H. Gruber, “Diet, feeding-habits and estimates of daily ration of young lemon sharks, Negaprion brevirostris (Poey),” Copeia, no. 1, pp. 204–218, 1990.
[40]
P. J. Motta, T. C. Tricas, R. E. Hueter, and A. P. Summers, “Feeding mechanism and functional morphology of the jaws of the lemon shark Negaprion brevirostris (Chondrichthyes, Carcharhinidae),” Journal of Experimental Biology, vol. 200, no. 21, pp. 2765–2780, 1997.
[41]
S. P. Newman, Spatial and Temporal Variation in Diet and Prey Selectivity of Nursery Bound Juvenile Lemon Sharks Around Bimini, Bahamas, in Biological Sciences, University of Plymouth, Plymouth, UK, 2003.
[42]
K. A. Feldheim, S. H. Gruber, and M. V. Ashley, “The breeding biology of lemon sharks at a tropical nursery lagoon,” Proceedings of the Royal Society B, vol. 269, no. 1501, pp. 1655–1661, 2002.
[43]
K. A. Feldheim, S. H. Gruber, and M. V. Ashley, “Reconstruction of parental microsatellite genotypes reveals female polyandry and philopatry in the lemon shark, Negaprion brevirostris,” Evolution, vol. 58, no. 10, pp. 2332–2342, 2004.
[44]
A. Morgan, P. W. Cooper, T. Curtis, and G. H. Burgess, “Overview of the U.S. East coast bottom longline shark fishery, 1994–2003,” Marine Fisheries Review, vol. 71, no. 1, pp. 23–38, 2009.
[45]
IUCN, The IUCN Red List of Threatened Species—Negaprion Brevirostris, 2009, http://www.iucnredlist.org/details/39380/0.
[46]
B. Worm, B. Davisa, L. Kettemera, et al., “Global catches, exploitation rates, and rebuilding options for sharks,” Marine Policy, vol. 40, pp. 194–204, 2013.
[47]
M. J. Barker, S. H. Gruber, S. P. Newman, and V. Schluessel, “Spatial and ontogenetic variation in growth of nursery-bound juvenile lemon sharks, Negaprion brevirostris: a comparison of two age-assigning techniques,” Environmental Biology of Fishes, vol. 72, no. 3, pp. 343–355, 2005.
[48]
B. R. Franks, The Spatial Ecology and Resource Selection of Juvenile Lemon Sharks (Negaprion Brevirostris) in Their Primary Nursery Areas, Drexel University, 2007.
[49]
D. D. Chapman, E. A. Babcock, S. H. Gruber et al., “Long-term natal site-fidelity by immature lemon sharks (Negaprion brevirostris) at a subtropical island,” Molecular Ecology, vol. 18, no. 16, pp. 3500–3507, 2009.
[50]
K. E. W. Shelden and J. L. Laake, “Comparison of the offshore distribution of southbound migrating gray whales from aerial survey data collected off Grainite Canyon, California,” Journal of Cetacean Research and Management, no. 4, pp. 53–56, 2002.
[51]
C. J. McDaniel, L. B. Crowder, and J. A. Priddy, “Spatial dynamics of sea turtle abundance and shrimping intensity in the U.S. Gulf of Mexico,” Ecology and Society, vol. 4, no. 1, 2000.
[52]
T. L. Guttridge, S. H. Gruber, B. R. Franks et al., “Deep danger: intra-specific predation risk influences habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris,” Marine Ecology Progress Series, vol. 445, pp. 279–291, 2012.
[53]
J. M. Fromentin, et al., “Preliminary results of aerial surveys of bluefin tuna in the western Mediterranean Sea,” Collective Volume of Scientific Papers ICCAT, vol. 85, no. 55, pp. 1019–1027, 2003.
[54]
L. F. Sundstr?m and S. H. Gruber, “Effects of capture and transmitter attachments on the swimming speed of large juvenile lemon sharks in the wild,” Journal of Fish Biology, vol. 61, no. 3, pp. 834–838, 2002.
[55]
S. T. Kessel, An Investigation Into the Behaviour and Population Dynamics of the Lemon Shark (Negaprion Brevirostris), in Earth and Ocean Sciences, Cardiff University, 2010.
[56]
M. R. Heupel and D. M. Webber, “Trends in acoustic tracking: where are the fish going and how will we follow them,” American Fisheries Society Symposium, vol. 76, pp. 219–231, 2012.
[57]
A. B. Carlisle and R. M. Starr, “Habitat use, residency, and seasonal distribution of female leopard sharks Triakis semifasciata in Elkhorn Slough, California,” Marine Ecology Progress Series, vol. 380, pp. 213–228, 2009.
[58]
Y. P. Papastamatiou, C. G. Lowe, J. E. Caselle, and A. M. Friedlander, “Scale-dependent effects of habitat on movements and path structure of reef sharks at a predator-dominated atoll,” Ecology, vol. 90, no. 4, pp. 996–1008, 2009.
[59]
B. M. Wetherbee, S. H. Gruber, and R. S. Rosa, “Movement patterns of juvenile lemon sharks Negaprion brevirostris within Atol das Rocas, Brazil: a nursery characterized by tidal extremes,” Marine Ecology Progress Series, vol. 343, pp. 283–293, 2007.
[60]
L. A. Ortega, M. R. Heupel, P. V. Beynen, and P. J. Motta, “Movement patterns and water quality preferences of juvenile bull sharks (Carcharhinus leucas) in a Florida estuary,” Environmental Biology of Fishes, vol. 84, no. 4, pp. 361–373, 2009.
[61]
S. H. Gruber, D. R. Nelson, and J. F. Morrissey, “Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon,” Bulletin of Marine Science, vol. 43, no. 1, pp. 61–76, 1988.
[62]
R. D. Grubbs, Long-Term Movements, Migration, and Temporal Delineation of A Summer Nursery For Juvenile sandbar sharks in the Chesapeake Bay Region, American Fisheries Society Symposium, 2007.
[63]
C. L. Conrath and J. A. Musick, “Investigations into depth and temperature habitat utilization and overwintering grounds of juvenile sandbar sharks, Carcharhinus plumbeus: the importance of near shore North Carolina waters,” Environmental Biology of Fishes, vol. 82, no. 2, pp. 123–131, 2008.
[64]
P. Miklos, S. M. Katzman, and J. J. Cech Jr., “Effect of temperature on oxygen consumption of the leopard shark, Triakis semifasciata,” Environmental Biology of Fishes, vol. 66, no. 1, pp. 15–18, 2003.
[65]
L. F. Sundstr?m and S. H. Gruber, “Using speed-sensing transmitters to construct a bioenergetics model for subadult lemon sharks, Negaprion brevirostris (Poey), in the field,” Hydrobiologia, vol. 371-372, pp. 241–247, 1998.
[66]
A. W. Stoner, “Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment,” Journal of Fish Biology, vol. 65, no. 6, pp. 1445–1471, 2004.
[67]
K. A. Bigelow, C. H. Boggs, and X. He, “Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery,” Fisheries Oceanography, vol. 8, no. 3, pp. 178–198, 1999.
[68]
W. W. Dowd, R. W. Brill, P. G. Bushnell, and J. A. Musick, “Standard and routine metabolic rates of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body mass and acute temperature change,” Fishery Bulletin, vol. 104, no. 3, pp. 323–331, 2006.
[69]
M. R. Heupel and C. A. Simpfendorfer, “Movement and distribution of young bull sharks Carcharhinus leucas in a variable estuarine environment,” Aquatic Biology, vol. 1, no. 3, pp. 277–289, 2007.
[70]
D. W. Sims, V. J. Wearmouth, E. J. Southall et al., “Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark,” Journal of Animal Ecology, vol. 75, no. 1, pp. 176–190, 2006.
[71]
H. Marsh and D. F. Sinclair, “An experimental evaluation of dugong and sea turtle aerial survey techniques,” Australian Wildlife Research, vol. 16, no. 6, pp. 639–650, 1989.
[72]
J. K. Baum, R. A. Myers, D. G. Kehler, B. Worm, S. J. Harley, and P. A. Doherty, “Collapse and conservation of shark populations in the Northwest Atlantic,” Science, vol. 299, no. 5605, pp. 389–392, 2003.
[73]
N. K. Dulvy, J. K. Baum, S. Clarke et al., “You can swim but you can't hide: the global status and conservation of oceanic pelagic sharks and rays,” Aquatic Conservation, vol. 18, no. 5, pp. 459–482, 2008.
[74]
F. Ferretti, R. A. Myers, F. Serena, and H. K. Lotze, “Loss of large predatory sharks from the Mediterranean Sea,” Conservation Biology, vol. 22, no. 4, pp. 952–964, 2008.
[75]
S. T. Buckland, Introduction To Distance Sampling: Estimating Abundance of Biological Populations, University Press, Oxford, UK, 2001.