Experimental feeding and growth studies on filter-feeding organisms often rely on constant algal concentrations maintained over extended periods of time. Here we present a fluorometer controlled apparatus (FCA) designed for feeding experiments with suspension-feeding mussels at naturally low chlorophyll concentrations above 0.5?μg?L?1. The principle used is feedback regulation of the algal concentration based on continuous monitoring of the fluorescence intensity of chlorophyll in water pumped through the apparatus from an aquarium with mussels. The filtration rate is monitored continuously as the rate of change of measured volume of an algal stock added to the aquarium for keeping a constant algal concentration. As an example, the FCA has been used to study the filtration rates of blue mussels (Mytilus edulis) at algal concentrations both near and above the incipient saturation level for reduced filtration activity. As another example to put the FCA into perspective as a reliable method for environmental effect studies, the apparatus has been used to demonstrate the acute effect of changing salinity on the filtration rate of M. edulis. 1. Introduction Bioenergetic and feeding-behavioural studies on filter-feeding organisms may often rely on supply of feed algae maintained at constant concentrations over extended periods of time. In the case of the blue mussel (Mytilus edulis) algal concentrations below a lower critical level [1–5] and above an upper critical saturation concentration (about 6?μg chlorophyll (chl ) L?1; see minireview by Riisg?rd et al. [6]) lead to partial shell closure and reduced filtration rate. The feeding behaviour of Mytilus edulis was studied by Riisg?rd et al. [6] using the so-called steady-state method (e.g., [7]) at different well-defined but relatively high algal concentrations eventually leading to reduced filtration rate. Thus, the upper algal concentration at which the mussel exploits its filtration capacity over an extended period of time was identified by stepwise raising the steady-state algal concentration, and the threshold concentration for incipient “saturation reduction” of the filtration rate was found to be between 5,000 and 8,000 (Rhodomonas salina) cells?mL?1, equivalent to 6.3 and 10.0?μg chl L?1, respectively [6]. However, the steady-state method can only be used to ensure a constant algal concentration between the lower and upper critical algal concentration where the filtration rate is constant [7]. Therefore, a more sophisticated feedback-controlled apparatus is needed for maintaining a well-defined algal
References
[1]
C. R. Newell, D. E. Campbell, and S. M. Gallagher, “Development of the mussel aquaculture lease site model MUSMOD: a field program to calibrate model formulations,” Journal of Experimental Marine Biology and Ecology, vol. 219, no. 1-2, pp. 143–169, 1998.
[2]
C. R. Newell, D. J. Wildish, and B. A. MacDonald, “The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis,” Journal of Experimental Marine Biology and Ecology, vol. 262, no. 1, pp. 91–111, 2001.
[3]
P. Dolmer, “Algal concentration profiles above mussel beds,” Journal of Sea Research, vol. 43, no. 2, pp. 113–119, 2000.
[4]
H. U. Riisg?rd, “Physiological regulation versus autonomous filtration in filter-feeding bivalves: starting points for progress,” Ophelia, vol. 54, no. 3, pp. 193–211, 2001.
[5]
P. L. Pascoe, H. E. Parry, and A. J. S. Hawkins, “Observations on the measurement and interpretation of clearance rate variations in suspension-feeding bivalve shellfish,” Aquatic Biology, vol. 6, no. 1–3, pp. 181–190, 2009.
[6]
H. U. Riisg?rd, P. P. Egede, and I. B. Saavedra, “Feeding behaviour of mussels, Mytilus edulis: new observations, with a mini-review of current knowledge,” Journal of Marine Biology, vol. 2011, Article ID 312459, 13 pages, 2011.
[7]
P. S. Larsen and H. U. Riisg?rd, “Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves,” Biology Open, vol. 1, no. 1, pp. 6–11, 2012.
[8]
H. U. Riisgard and A. Randl?v, “Energy budgest, growth and filtration rates in Mytilus edulis at different algal concentrations,” Marine Biology, vol. 61, no. 2-3, pp. 227–234, 1981.
[9]
E. Poulsen, H. U. Riisg?rd, and F. M?hlenberg, “Accumulation of cadmium and bioenergetics in the mussel Mytilus edulis,” Marine Biology, vol. 68, no. 1, pp. 25–29, 1982.
[10]
I. Clausen and H. U. Riisg?rd, “Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs,” Marine Ecology Progress Series, vol. 141, no. 1–3, pp. 37–45, 1996.
[11]
H. U. Riisg?rd, “On measurement of filtration rates in bivalves—the stony road to reliable data: review and interpretation,” Marine Ecology Progress Series, vol. 211, pp. 275–291, 2001.
[12]
J. E. Winter, “The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus,” Marine Biology, vol. 22, no. 4, pp. 317–328, 1973.
[13]
J. M. Navarro and J. E. Winter, “Ingestion rate, assimilation efficiency and energy balance in Mytilus chilensis in relation to body size and different algal concentrations,” Marine Biology, vol. 67, no. 3, pp. 255–266, 1982.
[14]
R. J. Thompson and B. L. Bayne, “Some relationships between growth, metabolism and food in the mussel Mytilus edulis,” Marine Biology, vol. 27, no. 4, pp. 317–326, 1974.
[15]
H. U. Riisg?rd and F. M?hlenberg, “An improved automatic recording apparatus for determining the filtration rate of Mytilus edulis as a function of size and algal concentration,” Marine Biology, vol. 52, no. 1, pp. 61–67, 1979.
[16]
K. Haupt, “A simple device to control concentrations of food algae in feeding experiments with filter feeding organisms,” in Ver?ffentlichungen des Instituts für Meeresforschung in Bremerhaven, vol. 17, pp. 241–244, 1979.
[17]
H. H. Janssen and H. P. Dreyer, “A simple and cheap apparatus for the controlled feeding of suspension feeders,” Marine Biology, vol. 62, no. 4, pp. 313–315, 1981.
[18]
D. J. Hornbach, T. Wilcox, J. Layne, and T. Davis, “A method for assessing clearance rates in suspension-feeding organisms by means of a fiber-optic colorimeter,” Canadian Journal of Zoology, vol. 69, no. 10, pp. 2703–2706, 1991.
[19]
W. C. M. K. Breteler and M. Laan, “An apparatus for automatic counting and controlling density of pelagic food particles in cultures of marine organisms,” Marine Biology, vol. 116, no. 1, pp. 169–174, 1993.
[20]
S. M. Gallager and R. Mann, “An apparatus for the measurements of grazing activity of filter feeders at constant food concentrations,” Marine Biology Letters, vol. 1, pp. 341–349, 1980.
[21]
B. Rico-Villa, P. Woerther, C. Mingant et al., “A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae,” Aquaculture, vol. 282, no. 1–4, pp. 54–60, 2008.
[22]
F. M?hlenberg and H. U. Riisg?rd, “Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves,” Marine Biology, vol. 54, no. 2, pp. 143–147, 1979.
[23]
J. Coughlan, “The estimation of filtering rate from the clearance of suspensions,” Marine Biology, vol. 2, no. 4, pp. 356–358, 1969.
[24]
C. B. J?rgensen, Bivalve Filter Feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology, Olsen & Olsen, Fredensborg, Denmark, 1990.
[25]
H. U. Riisg?rd, B. H. J?rgensen, K. Lundgreen et al., “The exhalant jet of mussels Mytilus edulis,” Marine Ecology Progress Series, vol. 437, pp. 147–164, 2011.
[26]
T. Ki?rboe and F. M?hlenberg, “Particle selection in suspension-feeding bivalves,” Marine Ecology Progress Series, vol. 5, pp. 291–296, 1981.
[27]
K. Sand-Jensen, S. L. Nielsen, J. Borum, and O. Geertz-Hansen, “Phytoplankton and macrophyte development in Danish coastal waters (in Danish with English summary),” in Havforskning fra Milj?styrelsen, vol. 30, Milj?ministeriet, Copenhagen, Denmark, 1994.
[28]
A. Hatcher, J. Grant, and B. Schofield, “Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay,” Marine Ecology Progress Series, vol. 115, no. 3, pp. 219–237, 1994.
[29]
A. Hatcher, J. Grant, and B. Schofield, “Seasonal changes in the metabolism of cultured mussels (Mytilus edulis L.) from a Nova Scotian inlet: the effects of winter ice cover and nutritive stress,” Journal of Experimental Marine Biology and Ecology, vol. 217, no. 1, pp. 63–78, 1997.
[30]
?. Okumu? and H. P. Stirling, “Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis L.) in suspended culture in two Scotish sea lochs,” Aquaculture, vol. 159, no. 3, pp. 249–261, 1998.
[31]
N. Rask, S. E. Pedersen, and M. H. Jensen, “Response to lowered nutrient discharges in the coastal waters around the island of Funen, Denmark,” Hydrobiologia, vol. 393, pp. 69–81, 1999.
[32]
P. Garen, S. Robert, and S. Bougrier, “Comparison of growth of mussel, Mytilus edulis, on longline, pole and bottom culture sites in the Pertuis Breton, France,” Aquaculture, vol. 232, no. 1–4, pp. 511–524, 2004.
[33]
J. Ojea, A. J. Pazos, D. Martínez, S. Novoa, J. L. Sánchez, and M. Abad, “Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle,” Aquaculture, vol. 238, no. 1–4, pp. 451–468, 2004.
[34]
T. G. Nielsen and M. Maar, “Effects of a blue mussel Mytilus edulis bed on vertical distribution and composition of the pelagic food web,” Marine Ecology Progress Series, vol. 339, pp. 185–198, 2007.
[35]
J. L. Iriarte, H. E. González, K. K. Liu, C. Rivas, and C. Valenzuela, “Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43° S),” Estuarine, Coastal and Shelf Science, vol. 74, no. 3, pp. 471–480, 2007.
[36]
T. Strohmeier, ?. Strand, M. Alunno-Bruscia, A. Duinker, and P. J. Cranford, “Variability in particle retention efficiency by the mussel Mytilus edulis,” Journal of Experimental Marine Biology and Ecology, vol. 412, pp. 96–102, 2012.
[37]
M. Frechette, C. A. Butman, and W. R. Geyer, “The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L.,” Limnology & Oceanography, vol. 34, no. 1, pp. 19–36, 1989.
[38]
H. U. Riisg?rd, J. Lassen, and C. Kittner, “Valve-gape response times in mussels (Mytilus edulis)—effects of laboratory preceding-feeding conditions and in situ tidally induced variation in phytoplankton biomass,” Journal of Shellfish Research, vol. 25, no. 3, pp. 901–911, 2006.
[39]
H. U. Riisg?rd, “Filtration rate and growth in the blue mussel, Mytilus edulis Linneaus, 1758: dependence on algal concentration,” Journal of Shellfish Research, vol. 10, no. 1, pp. 29–35, 1991.
[40]
J. K. Petersen and H. U. Riisgard, “Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord,” Marine Ecology Progress Series, vol. 88, no. 1, pp. 9–17, 1992.
[41]
H. U. Riisg?rd and N. M. Ivarsson, “The crown-filament-pump of the suspension-feeding polychaete Sabella penicillus: filtration, effects of temperature, energy cost,” Marine Ecology Progress Series, vol. 62, pp. 249–257, 1990.
[42]
B. A. MacDonald and J. E. Ward, “Feeding activity of scallops and mussels measured simultaneously in the field: repeated measures sampling and implications for modelling,” Journal of Experimental Marine Biology and Ecology, vol. 371, no. 1, pp. 42–50, 2009.
[43]
T. Ki?rboe, F. M?hlenberg, and O. N?hr, “Effect of suspended bottom material on growth and energetic in Mytilus edulis,” Marine Biology, vol. 61, no. 4, pp. 283–288, 1981.
[44]
J. C. Kromkamp and T. van Engeland, “Changes in phytoplankton biomass in the western scheldt estuary during the period 1978–2006,” Estuaries and Coasts, vol. 33, no. 2, pp. 270–285, 2010.
[45]
C. J. M. Philippart, J. M. van Iperen, G. C. Cadée, and A. F. Zuur, “Long-term field observations on seasonality in chlorophyll-a concentrations in a shallow coastal marine ecosystem, the Wadden Sea,” Estuaries and Coasts, vol. 33, no. 2, pp. 286–294, 2010.
[46]
R. L. Foster-Smith, “The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule(L.) and Venerupis pullastra (Montagu),” Journal of Experimental Marine Biology and Ecology, vol. 17, no. 1, pp. 1–22, 1975.
[47]
P. G. Beninger and S. D. St-Jean, “The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles,” Marine Biology, vol. 129, no. 2, pp. 389–397, 1997.
[48]
H. Scholten and A. C. Smaal, “Responses of Mytilus edulis L. to varying food concentrations: testing EMMY, an ecophysiological model,” Journal of Experimental Marine Biology and Ecology, vol. 219, no. 1-2, pp. 217–239, 1998.
[49]
E. Gosling, Bivalve Molluscs. Biology, Ecology and Culture, Fishing News Books, Blackwell, Okla, USA, 2003.
[50]
J. E. Ward and S. E. Shumway, “Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves,” Journal of Experimental Marine Biology and Ecology, vol. 300, no. 1-2, pp. 83–130, 2004.
[51]
D. J. Wildish and M. P. Miyares, “Filtration rate of blue mussels as a function of flow velocity: preliminary experiments,” Journal of Experimental Marine Biology and Ecology, vol. 142, no. 3, pp. 213–219, 1990.
[52]
D. J. Wildish and D. D. Kristmanson, “Hydrodynamic control of bivalve filter feeders: a conceptual view,” NATO ASI Series, vol. 33, pp. 297–324, 1993.
[53]
P. C. Almada-Villela, “The effects of reduced salinity on the shell growth of small Mytilus edulis,” Journal of the Marine Biological Association of the United Kingdom, vol. 64, no. 1, pp. 171–182, 1984.
[54]
H. U. Riisg?rd, L. B?ttiger, and D. Pleissner, “Effect of salinity on growth of mussels, Mytilus edulis, with special reference to Great Belt (Denmark),” Open Journal of Marine Science, vol. 2, pp. 167–176, 2012.
[55]
L. Chauvaud, G. Thouzeau, and Y. M. Paulet, “Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France),” Journal of Experimental Marine Biology and Ecology, vol. 227, no. 1, pp. 83–111, 1998.
[56]
L. Chauvaud, F. Jean, O. Ragueneau, and G. Thouzeau, “Long-term variation of the Bay of Brest ecosystem: benthic-pelagic coupling revisited,” Marine Ecology Progress Series, vol. 200, pp. 35–48, 2000.
[57]
C. B. J?rgensen, F. M?hlenberg, and O. Sten-Knudsen, “Nature of relation between ventilation and oxygen consumption in filter feeders,” Marine Ecology Progress Series, vol. 29, pp. 73–88, 1986.
[58]
H. U. Riisg?rd, D. Pleissner, K. Lundgreen, and P. S. Larsen, “Growth of mussels Mytilus edulis at algal (Rhodomonas salina) concentrations below and above saturation levels for reducted filtration rate,” Marine Biology Research, vol. 9, no. 10, pp. 1005–1017, 2013.