We present four summers (2006–2009) of field observations of the Diana fritillary, Speyeria diana (Cramer, 1777), throughout the Southern Appalachian Mountains, USA, in the eastern portion of its distribution. We describe our observations of resource use by S. diana in sites located in Georgia, Tennessee, South Carolina, North Carolina, and Virginia. Butterflies imbibed nectar from five genera (>11 species) of flowering plants and also imbibed liquid from dirt roads and horse manure. The majority of butterflies (57%) were observed feeding on milkweed, Asclepias spp., a high-quality nectar-producing plant which is known to be an important resource for many Lepidoptera. We documented 14 species of Viola spp., the larval host plant used by Speyeria, in our survey sites. All butterflies were marked to observe their movement. Recapture rates ranged from 17% to 56%, suggesting that dispersal of S. diana out of suitable habitat was somewhat limited. 1. Introduction The Diana fritillary, Speyeria diana (Cramer, 1777), is an endemic butterfly species in the southeastern USA that has experienced a severe range collapse over the past century [1]. Speyeria diana was once distributed more widely across the southeastern US than it is at the present, ranging from coastal Virginia across the Ohio River Valley to Arkansas and Missouri. This species now persists in two geographically separated population groupings across the Interior Highlands of Arkansas and Oklahoma in the west, and throughout the Southern Appalachian Mountains in the east [1]. Due to its rapid decline over the past century, S. diana is considered to be a species of federal concern in North Carolina by the Fish and Wildlife Service and is included on the North Carolina Animal Watch List published by the North Carolina Natural Heritage Program [2]. Speyeria diana is also included on the Red List of Pollinator Insects of North America, compiled by the Xerces Society for Invertebrate Conservation [3] and is listed by NatureServe as a G3 species (rare across its distribution) [4]. Despite regional listings, there is no federal protection in place for this species under the US Endangered Species Act(16 U.S.C. 1531-1544, 87 Stat. 884). A number of studies have established the importance of violets, from the genus Viola, to Speyeria larvae [5–7]. While a number of violet species have been used to successfully rear S. diana in laboratory settings [8–11], to our knowledge there are no documented reports of Viola usage by S. diana from natural habitats. Evidence does suggest that S. diana may specialize in its
References
[1]
C. N. Wells and D. W. Tonkyn, “Range collapse in the Diana fritillary,” Insect Conservation and Diversity. In press.
[2]
H. E. Legrand, J. T. Finnegan, S. P. Hall, A. J. Leslie, and J. A. Ratcliffe, Natural Heritage Program List of the Rare Animal Species of North Carolina, North Carolina Natural Heritage Program, Office of Conservation and Community Affairs. North Carolina Department of Environment and Natural Resources, Raleigh, NC, USA, 2012.
[3]
D. M. Vaughan and M. D. Shepherd, “Species profile: Speyeria diana,” in Red List of Pollinator Insects of North America. CD-ROM Version 1, M. D. Shepherd, D. M. Vaughan, and S. H. Black, Eds., The Xerces Society for Invertebrate Conservation, Portland, Ore, USA, 2005.
[4]
Natureserve, “NatureServe Explorer: An online encyclopedia of life [web application]. Version 7. 0,” NatureServe, Arlington, Va, USA, 2013, http://www.natureserve.org/explorer.
[5]
A. B. Swengel, “Habitat associations of sympatric violet-feeding fritillaries (Euptoieta, Speyeria, Boloria) (Lepidoptera: Nymphalidae) in tallgrass prairie,” Great Lakes Entomologist, vol. 30, no. 1-2, pp. 1–18, 1997.
[6]
L. Kelly and D. M. Debinski, “Relationship of host plant density to size and abundance of the regal fritillary Speyeria idalia Drury (nymphalidae),” Journal of the Lepidopterists' Society, vol. 52, no. 3, pp. 262–276, 1998.
[7]
B. J. Kopper, R. E. Charlton, and D. C. Margolies, “Oviposition site selection by the regal fritillary, Speyeria idalia, as affected by proximity of violet host plants,” Journal of Insect Behavior, vol. 13, no. 5, pp. 651–665, 2000.
[8]
W. H. Edwards, “Notes on the larvae of Argynnis cybele, aphrodite, and diana,” The Canadian Entomologist, vol. 6, pp. 121–125, 1874.
[9]
W. H. Evans, “The saga of an orphan Speyeria diana larva,” Journal of the Lepidopterists’ Society, vol. 13, pp. 93–95, 1959.
[10]
S. O. Matoon, R. D. Davis, and O. D. Spencer, “Rearing techniques for for species of Speyeria (Nymphalidae),” Journal of the Lepidopterists’ Society, vol. 25, pp. 247–255, 1971.
[11]
C. N. Wells, L. Edwards, R. Hawkins, L. Smith, and D. Tonkyn, “A rearing method for Argynnis (Speyeria) diana (Lepidoptera: Nymphalidae) that avoids larval diapause,” Psyche, vol. 2011, Article ID 940280, pp. 1–6, 2011.
[12]
M. D. Moran and C. D. Baldridge, “Distribution of the Diana Fritillary, Speyeria diana (Nymphalidae) in Arkansas, with notes on nectar plant and habitat preference,” Journal of the Lepidopterists' Society, vol. 56, no. 3, pp. 162–165, 2002.
[13]
G. N. Ross, “What’s for dinner? A new look at the role of phytochemicals in butterfly diets,” News of the Lepidopterists’ Society, vol. 45, pp. 83–89, 2003.
[14]
D. C. Rudolph, C. A. Ely, R. R. Schaefer, J. H. Williamson, and R. E. Thill, “The Diana fritillary (Speyeria diana) and great spangled fritillary (S. cybele): dependence on fire in the Ouachita Mountains of Arkansas,” Journal of the Lepidopterists' Society, vol. 60, no. 4, pp. 218–226, 2006.
[15]
L. F. Gall, “The effects of capturing and marking on subsequent activity in Boloria acrocnema (Lepidoptera: Nymphalidae), with a comparison of different numerical models that estimate population size,” Biological Conservation, vol. 28, no. 2, pp. 139–154, 1984.
[16]
A. C. Morton, “The effects of marking and handling on recapture frequencies of butterflies,” in The Biology of Butterflies, P. R. Ackery and R. I. Vane-Wright, Eds., pp. 55–58, Princeton University Press, Princeton, NJ, USA, 1984.
[17]
H. B. Britten and L. Riley, “Nectar source diversity as an indicator of habitat suitability for the endangered Uncompahgre fritillary, Boloria acrocnema (Nymphalidae),” Journal of the Lepidopterists' Society, vol. 48, no. 3, pp. 173–179, 1994.
[18]
R. E. Latham, D. Zercher, P. McElhenny, P. Mooreside, and B. Ferster, “The role of disturbance in habitat restoration and management for the eastern regal fritillary (Speyeria idalia idalia) at a military installation in Pennsylvania,” Ecological Restoration, vol. 25, no. 2, pp. 103–111, 2007.
[19]
J. Mevi-Schütz and A. Erhardt, “Amino acids in nectar enhance butterfly fecundity: a long-awaited link,” American Naturalist, vol. 165, no. 4, pp. 411–419, 2005.
[20]
F. Cahenzli and A. Erhardt, “Enhancing offspring quality or quantity? Different ways for using nectar amino acids in female butterflies,” in Oecologia, vol. 169, pp. 1005–10014, 2012.
[21]
F. Cahenzli and A. Erhardt, “Nectar sugars enhance fitness in male Coenonympha pamphilus butterflies by increasing longevity or realized reproduction,” Oikos, vol. 121, pp. 1417–1423, 2012.
[22]
F. Cahenzli and A. Erhardt, “Nectar amino acids enhance reproduction in male butterflies,” Oecologia, vol. 171, pp. 197–205, 2013.
[23]
S. R. Smedley and T. Eisner, “Sodium uptake by puddling in a moth,” Science, vol. 270, no. 5243, pp. 1816–1818, 1995.
[24]
F. S. Gilliam, N. L. Turrill, and M. B. Adams, “Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests,” Ecological Applications, vol. 5, no. 4, pp. 947–955, 1995.
[25]
T. R. E. Southwood and P. A. Henderson, Ecological Methods, Blackwell, Oxford, UK, 3rd edition, 2000.
[26]
M. Ezzeddine and S. F. Matter, “Nectar flower use and electivity by butterflies in sub-alpine meadows,” Journal of the Lepidopterists' Society, vol. 62, no. 3, pp. 138–142, 2008.
[27]
C. N. Wells, “An ecological field lab for tracking monarch butterflies & their parasites,” American Biology Teacher, vol. 72, no. 6, pp. 339–344, 2010.