全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Selection of Oviposition Sites by Libelloides coccajus (Denis & Schiffermüller, 1775) (Neuroptera: Ascalaphidae), North of the Alps: Implications for Nature Conservation

DOI: 10.1155/2014/542489

Full-Text   Cite this paper   Add to My Lib

Abstract:

(1) The survival of peripheral populations is often threatened, especially in a changing environment. Furthermore, such populations frequently show adaptations to local conditions which, in turn, may enhance the ability of a species to adapt to changing environmental conditions. In conservation biology, peripheral populations are therefore of particular interest. (2) In northern Switzerland and southern Germany, Libelloides coccajus is an example of such a peripheral species. (3) Assuming that suitable oviposition sites are crucial to its long-term survival, we compared oviposition sites and adjacent control plots with regard to structure and composition of the vegetation. (4) Vegetation structure at and around oviposition sites seems to follow fairly stringent rules leading to at least two benefits for the egg clutches: (i) reduced risk of contact with adjacent plants, avoiding delayed drying after rainfall or morning dew and (ii) reduced shading and therefore higher temperatures. (5) Furthermore, the study showed that it is possible to successfully create secondary habitats for L. coccajus, as shown by a road verge in one of our study areas. It is likely that other artificial habitats such as abandoned gravel pits and quarries may also provide suitable habitats. 1. Introduction Peripheral populations are of particular interest in conservation biology. As species in peripheral populations tend to live under suboptimal conditions [1], these populations often show adaptations to local conditions and therefore can enhance the species’ ability to adapt to a changing environment [2–4]. Guo et al. [5] also point out that monitoring marginal populations can improve the understanding of crucial site factors and, in consequence, enhance the chances of correctly predicting future developments. Accordingly, peripheral populations are of great significance for conservation biology [2, 6]. In northern Switzerland and southern Germany, thehighly thermophilic Libelloides coccajus (Denis and Schiffermüller, 1775) (Neuroptera: Ascalaphidae) is an example of a peripheral species. L. coccajus has its core distribution around the Mediterranean coast, where this species can be found in open forests, on rocky screes, and in meadows with quite dense vegetation that never becomes dry [7]. North of the Alps, the climate is substantially colder and in the summer months wetter than in the Mediterranean region, so that thermophilic species such as L. coccajus can survive only on exceptionally warm and dry sites which are mostly isolated [8, 9]. Such a shift in habitat preferences

References

[1]  J. H. Lawton, “Range, population abundance and conservation,” Trends in Ecology and Evolution, vol. 8, pp. 409–413, 1993.
[2]  A. Cassel-Lundhagen, T. Tammaru, J. J. Winding, N. Ryrholm, and S. Nylin, “Are peripheral populations special? Congruent patterns in two butterfly species,” Ecography, vol. 32, pp. 591–600, 2009.
[3]  K. A. Crandall, O. R. P. Bininda-Emonds, G. M. Mace, and R. K. Wayne, “Considering evolutionary processes in conservation biology,” Trends in Ecology and Evolution, vol. 15, pp. 290–295, 2000.
[4]  A. P. Hendry and M. T. Kinnison, “Perspective: the pace of modern life: measuring rates of contemporary microevolution,” Evolution, vol. 53, pp. 1637–1653, 1999.
[5]  Q. Guo, M. Taper, M. Schoenenberger, and J. Brandle, “Spatial-temporal population dynamics across species range: from centre to margin,” Oikos, vol. 108, pp. 47–57, 2005.
[6]  S. Y. Gibson, R. C. van der Marel, and B. M. Starzomski, “Climate change and conservation of leading-edge peripheral populations,” Conservation Biology, vol. 23, pp. 1369–1373, 2009.
[7]  H. Asp?ck, U. Asp?ck, and H. H?lzel, Die Neuropteren Europas, vol. 1, Goecke & Evers, Krefeld, Germany, 1980.
[8]  W. Egglin, “Beitrag zur Kenntnis der Neuropteroidae des Wallis,” Bulletin de la Murithienne, vol. 58, pp. 63–95, 1941.
[9]  W. Wolf, “Imaginalbiologie und überleben isolierter Kleinpopulationen des Libellenschmetterlingshaft Libelloides coccajus ([Denis & Schiffermüller], 1775) im bayrischen Taubertal n?rdlich Rothenburg o.d.T.,” Beitr?ge zur Bayrischen Entomofaunistik, vol. 6, pp. 255–271, 2004.
[10]  H. Walter and E. Walter, “Einige allgemeine Ergebnisse unserer Forschungsreise nach Südwestafrika 1952/53: das Gesetz der relativen Standortskonstanz, das Wesen der Pflanzengemeinschaften,” Berichte der Deutschen Botanischen Gesellschaft, vol. 66, pp. 227–235, 1953.
[11]  W. Frey and R. L?sch, Geobotanik Pflanze und Vegetation in Raum und Zeit, Springer, Heidelberg, Germany, 2010.
[12]  Z. G. Davies, R. J. Wilson, S. Coles, and C. D. Thomas, “Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming.,” Journal of Animal Ecology, vol. 75, pp. 247–256, 2006.
[13]  R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British Odonata,” Global Change Biology, vol. 11, pp. 502–506, 2005.
[14]  J. K. Hill, C. D. Thomas, and B. Huntley, “Climate and habitat availability determine 20th century changes in a butterfly's range margin,” Proceedings of the Royal Society London B, vol. 266, pp. 1197–1206, 1999.
[15]  R. K. Pachauri and A. Reisinger, “Climate Change 2007: Synthesis Report,” Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2007, http://www.ipcc.ch/.
[16]  C. Parmesan and G. Yohe, “A globally coherent fingerprint of climate change impacts across natural systems,” Nature, vol. 421, no. 6918, pp. 37–42, 2003.
[17]  C. D. Thomas, E. J. Bodsworth, R. J. Wilson et al., “Ecological and evolutionary processes at expanding range margins,” Nature, vol. 411, no. 6837, pp. 577–581, 2001.
[18]  W. Egglin, “Die Neuropteren der Umgebung von Basel,” Revue Suisse de Zoologie, vol. 16, pp. 243–358, 1940.
[19]  R. Fischer, Der Schmetterlingshaft Libelloides coccajus [DENIS & SCHIFFERMüLLER, 1775] im Rau Aargau-Schaffhausen-Zürich [Bachelor Thesis], Zurich University of Applied Sciences, W?denswil, Switzerland, 2009.
[20]  R. Frey-Wahl, “Eiszeitrelikte und w?rmeliebende Mitglieder der Wirbellosenfauna,” Mitteilungen der Aargauischen Naturforschenden Gesellschaft, vol. 24, pp. 153–169, 1953.
[21]  P. Duelli, “Rote Liste der gef?hrdeten Netzflügler in der Schweiz,” in Rote Liste der Gef?hrdeten Tierarten in der Schweiz, P. Duelli, Ed., pp. 64–65, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, Switzerland, 1994.
[22]  H. Pr?se and A. Gruppe, “Rote Liste gef?hrdeter Netzflügler (Neuropteroidae) Bayerns,” Schriftenreihe Bayrisches Landesamt für Umweltschutz, vol. 166, pp. 95–98, 2003.
[23]  E. J. Tr?ger, “Gesamtverzeichnis der Netzflügler (Neuropteroidae) und Rote Liste gef?hrdeter Arten in Baden-Württemberg. Stand Juli 1997,” in Rote Listen Auf CD-Rom. Deutschland, ?sterreich, Lichtenstein, Schweiz, Süd-Tirol, C. K?ppel, E. Rennwald, and A. Gigon, Eds., pp. 78–80, Verlag für interaktive Medien, Gaggenau, Germany, 1998.
[24]  Y. Gonseth, “L'Ascalaphe, Libelloides coccajus (Denis & Schiff., 1775), (Neuropteroidae, Planipennia) dans le Canton de Neuchatel,” Bulletin Romand D'Entomologie, vol. 9, pp. 49–59, 1991.
[25]  R. Fetz, “Untersuchungen zur Biologie und Habitatoptimierung von Libelloides coccajus (Neuroptera: Ascalaphidae) auf Muschelkalkh?ngen des Taubertales bei Rothenburg o.d.T.,” Schriftenreihe Bayrisches Landesamt für Umweltschutz, vol. 150, pp. 138–192, 1999.
[26]  R. Fetz, “Zoologische Aspekte des Magerrasen-Managements am Beispiel des Libellen-Schmetterlingshafts (Libelloides coccajus),” Schriftenreihe Bayrisches Landesamt für Umweltschutz, vol. 167, pp. 73–79, 2002.
[27]  W. Wolf, “Der Libellen-Schmetterlingshaft Libelloides coccajus im bayrischen Taubertal-Lebensraum, Ansprüche, Entwicklungsdaten,” in Landschaftspflege und L?nderübergreifende Umsetzung Eines Biotopverbundes im Taubertal Laufende Seminarbeitr?ge 1/04, A. Baumann, Ed., pp. 61–66, Bayrische Akademie für Naturschutz und Landschaftspflege, 2005.
[28]  L. J. Beyer and C. B. Schultz, “Oviposition selection by a rare grass skipper Polites mardon in montane habitats: advancing ecological understanding to develop conservation strategies,” Biological Conservation, vol. 143, no. 4, pp. 862–872, 2010.
[29]  M. Konvi?ka and T. Kuras, “Population structure, behaviour and selection of oviposition sites of an endangered butterfly, Parnassius mnemosyne, in Litovelske Pomoravi, Czech Republic,” Journal of Insect Conservation, vol. 3, no. 3, pp. 211–223, 1999.
[30]  B. Randlkofer, F. Jordan, O. Mitesser, T. Meiners, and E. Obermaier, “Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti,” Entomologia Experimentalis et Applicata, vol. 132, no. 2, pp. 134–146, 2009.
[31]  C. A. Tauber, M. J. Tauber, and G. S. Albuquerque, “Neuroptera,” in Encyclopaedia of Insects, V. H. Resh and R. T. Cardé, Eds., pp. 695–706, Elsevier, Amsterdam, The Netherlands, 2009.
[32]  H. Dierschke, Pflanzensoziologie, Eugen Ulmer, Stuttgart, Germany, 1994.
[33]  M. Küchler, “Vegedaz. Ein Programmpaket zur Erfassung und Exploration von Vegetationsdaten,” WSL, Birmensdorf, Switzerland, 2010, http://www.wsl.ch/dienstleistungen/produkte/software/vegedaz/index_DE.
[34]  E. Landolt, ?kologische Zeigerwerte zur Schweizer Flora, Ver?ffentlichungen des Geobotanischen Instituts der ETH, Zürich, Switzerland, 1977.
[35]  R Development Core Team, “R: A language and environment for statistical computing,” 2010, http://www.R-project.org.
[36]  C. F. J. ter Braak and P. Smilaur, Canoco Version 4.55, Biometris Plant Research International, Wageningen, Netherlands, 2006.
[37]  S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian Journal of Statistics, vol. 6, pp. 65–70, 1979.
[38]  R. J. Bray and J. T. Curtis, “An ordination of the upland forest communities of southern Wisconsin,” Ecological Monographs, vol. 27, pp. 325–349, 1957.
[39]  J. Osborne, “Notes on the use of data transformations,” Practical Assessment, Research & Evaluation, vol. 8, no. 6, 2002, http://pareonline.net/getvn.asp?v=8&n=6.
[40]  O. Wildi, Data Analysis in Vegetation Ecology, John Wiley & Sons, Chichester, UK, 2010.
[41]  K. Goodell, “Food availability affects Osmia pumila (Hymenoptera: Megachilidae) foraging, reproduction, and brood parasitism,” Oecologia, vol. 134, no. 4, pp. 518–527, 2003.
[42]  J. A. Rosenheim, G. E. Heimpel, and M. Mangel, “Egg maturation, egg resorption and the costliness of transient egg limitation in insects,” Proceedings of the Royal Society B, vol. 267, no. 1452, pp. 1565–1573, 2000.
[43]  J. Gr?ning, S. Krause, and A. Hochkirch, “Habitat preferences of an endangered insect species, Cepero's ground-hopper (Tetrix ceperoi),” Ecological Research, vol. 22, no. 5, pp. 767–773, 2007.
[44]  B. Baur, H. Baur, C. R?sti, and D. R?sti, Die Heuschrecken der Schweiz, Haupt, Bern, Switzerland, 2006.
[45]  J. A. Marshall and E. C. M. Haes, Grasshoppers and Allied Insects of Great Britain and Ireland, Harley Books, Colchester, UK, 1988.
[46]  J. A. Thomas, C. D. Thomas, D. J. Simcox, and R. T. Clarke, “Ecology and declining status of the silver-spotted skipper butterfly (Hesperia comma) in Britain,” Journal of Applied Ecology, vol. 23, no. 2, pp. 365–380, 1986.
[47]  A. P. Schaffers, I. P. Raemakers, K. V. Sykora, and C. J. F. Ter Braak, “Arthropod assemblages are best predicted by plant species composition,” Ecology, vol. 89, no. 3, pp. 782–794, 2008.
[48]  N. M. Haddad, G. M. Crutsinger, K. Gross, J. Haarstad, J. M. H. Knops, and D. Tilman, “Plant species loss decreases arthropod diversity and shifts trophic structure,” Ecology Letters, vol. 12, no. 10, pp. 1029–1039, 2009.
[49]  M. Müller, J. Schlegel, and B. O. Krüsi, “Der Libellen-Schmetterlingshaft (Libelloides coccajus [Denis & Schiffermüller 1775]) im Kanton Aargau: aktuelles Vorkommen und Empfehlungen zum Artenschutz,” Mitteilungen der Schweizerischen Entomologischen Gesellschaft, vol. 85, pp. 177–1199, 2012.
[50]  O. E. Sala, “The effect of Herbivory on vegetation structure,” in Plant Form and Vegetation Structure. Plant Form and Vegetation Structure, M. J. A. Werger, P. J. M. van der Aart, H. J. During, and J. T. A. Verboeven, Eds., pp. 317–330, SPB Academic Publishing, The Hague, Netherlands, 1988.
[51]  J. H. Willems, “Species composition and above ground phytomass in chalk grassland with different management,” Vegetatio, vol. 52, no. 3, pp. 171–180, 1983.
[52]  T. Lachat, D. Pauli, Y. Gonseth et al., Wandel der Biodiversit?t in der Schweiz Seit 1900. Ist die Talsohle Erreicht?Bristol Stiftung, Haupt, Bern, Switzerland, 2010.
[53]  R. Delarze, Y. Gonseth, and P. Galland, Lebensr?ume der Schweiz, ?kologie—Gef?hrdung—Kennarten, Ott, Thun, Switzerland, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133