全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Crystal Structures, and Magnetic Properties of Ternary M(II)-Dicyanamide-hydroxypyridine Complexes

DOI: 10.1155/2013/206589

Full-Text   Cite this paper   Add to My Lib

Abstract:

Three two-dimensional (2D) and 3D supramolecular coordination architectures based on ternary M(II)-dicyanamide-2-hydroxypyridine systems, [Co(hmpH)2(dca)2] (1), [Cu(hmpH)2(dca)2] (2), and [Mn(hepH)2(dca)2] (3) (dca = dicyanamide, hmpH = 2-(hydroxymethyl)pyridine, hepH = 2-(hydroxyethyl)pyridine), have been synthesized. 1 is a mononuclear Co(II) complex. The mononuclear units are interlinked into a 2D (4,4) hydrogen-bonded layer via O–H?N hydrogen bonds between the hydroxyl groups and the noncoordinating nitrile ends. These 2D layers are further extended into a 3D supramolecular architecture via the interlayer pyridyl-pyridyl stacking interaction. 2 has a 1D coordination chain structure formed by the double 1,5-dca bridged dinuclear [Cu2( 1,5-dca)2(hmpH)2] unit and the 1,3-dca bridges via weak Cu–N coordination, and these 1D coordination chains are further extended into 2D hydrogen-bonded layers via strong O–H?N hydrogen-bonding interaction between the hydroxyl groups and the noncoordinating nitrile ends. 3 is a 2D (4,4) coordination network made of 1D [Mn(hepH)( 1,5-dca)] helical chain units and interchain double ( 1,5-dca) bridges. Pairs of [Mn(hepH)( 1,5-dca)] helical chains are interlinked by the double ( 1,5-dca) bridges into a racemic coordination layer structure, which is further extended into a 3D hydrogen-bonded network. Magnetic studies reveal that weak antiferromagnetic exchange occurs in 3. 1. Introduction Since the pioneering reports of Robson and coworkers in 1990 [1, 2], this realm of crystal engineering is growing interest, and great efforts have been devoted to the assembly of supramolecular systems of organic molecular solids and coordination polymers through hydrogen bonds and or coordination bonds, with the resultant crystalline materials having a wide range of potential applications, such as electronic, magnetic, optical, absorbent, and catalytic materials [3–29]. In recent years, much attention has been devoted to dicyanamide-anion- (dca-) bridged coordination polymers [30–42] for the large variety of magnetic properties, especially the α-M(dca)2 series of compounds, which have isomorphous rutile-like structure, display ferromagnetism (Co, Ni) [43–46], spin-canted antiferromagnetism (Cr, Mn, Fe) [47, 48], and paramagnetism (Cu) [45, 46]. Of further importance, from a structural perspective, when auxiliary L ligands are introduced to the ternary -dca-L systems, different coordination architectures, such as mononuclear and dinuclear compounds [49], 1D chains [50–58], 2D (4,4) or (6,3) [59–63] sheets, and 3D network topologies [64–67],

References

[1]  B. F. Hoskins and R. Robson, “Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4?-tetracyanotetraphenylmethane]BF4.xC6H5NO2,” Journal of the American Chemical Society, vol. 112, pp. 1545–1554, 1990.
[2]  K. R. Seddon and M. Zaworotko, Eds., Crystal Engineering: The Design and Application of Functional Solids, Kluwer Academic, Dodrecht, The Netherlands, 1996.
[3]  G. R. Desiraju, “Supramolecular synthons in crystal engineering—a new organic synthesis,” Angewandte Chemie International Edition, vol. 34, no. 21, pp. 2311–2327, 1995.
[4]  C. B. Aaker?y and A. M. Beatty, “Review: crystal engineering of hydrogen-bonded assemblies—a progress report,” Australian Journal of Chemistry, vol. 54, no. 7, pp. 409–421, 2001.
[5]  K. T. Holman, A. M. Pivovar, J. A. Swift, and M. D. Ward, “Metric engineering of soft molecular host frameworks,” Accounts of Chemical Research, vol. 34, no. 2, pp. 107–118, 2001.
[6]  A. D. Burrows, “Crystal engineering using multiple hydrogen bonds,” Structure and Bonding, vol. 108, pp. 55–96, 2004.
[7]  D. Braga, L. Maini, M. Polito, and F. Grepioni, “Hydrogen bonding interactions between ions: a powerful tool in molecular crystal engineering,” Structure and Bonding, vol. 111, pp. 1–32, 2004.
[8]  A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. A. Withersby, and M. Schr?der, “Inorganic crystal engineering using self-assembly of tailored building-blocks,” Coordination Chemistry Reviews, vol. 183, no. 1, pp. 117–138, 1999.
[9]  B. Moulton and M. J. Zaworotko, “From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids,” Chemical Reviews, vol. 101, no. 6, pp. 1629–1658, 2001.
[10]  L. Carlucci, G. Ciani, and D. M. Proserpio, “Polycatenation, polythreading and polyknotting in coordination network chemistry,” Coordination Chemistry Reviews, vol. 246, no. 1-2, pp. 247–289, 2003.
[11]  C. Janiak, “Engineering coordination polymers towards applications,” Dalton Transactions, no. 14, pp. 2781–2804, 2003.
[12]  R. Robson, “A net-based approach to coordination polymers,” Journal of the Chemical Society, Dalton Transactions, vol. 2000, no. 21, pp. 3735–3744, 2000.
[13]  S. Kitagawa and S. Masaoka, “Metal complexes of hexaazatriphenylene (hat) and its derivatives-from oligonuclear complexes to coordination polymers,” Coordination Chemistry Reviews, vol. 246, pp. 73–88, 2003.
[14]  K. Biradha, “Crystal engineering: from weak hydrogen bonds to co-ordination bonds,” CrystEngComm, vol. 5, pp. 374–384, 2003.
[15]  A. M. Beatty, “Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes,” Coordination Chemistry Reviews, vol. 246, pp. 131–143, 2003.
[16]  C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan, “Metal carboxylates with open architectures,” Angewandte Chemie International Edition, vol. 43, no. 12, pp. 1466–1496, 2004.
[17]  P. J. Hagrman, D. Hagrman, and J. Zubieta, “Organic-inorganic hybrid materials: from “Simple” coordination polymers to organodiamine-templated molybdenum oxides,” Angewandte Chemie International Edition, vol. 38, pp. 2638–2684, 1999.
[18]  O. Kahn, “Chemistry and physics of supramolecular magnetic materials,” Accounts of Chemical Research, vol. 33, no. 10, pp. 647–657, 2000.
[19]  O. R. Evans and W. Lin, “Crystal engineering of NLO materials based on metal-organic coordination networks,” Accounts of Chemical Research, vol. 35, pp. 511–522, 2002.
[20]  O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, “Reticular synthesis and the design of new materials,” Nature, vol. 423, no. 6941, pp. 705–714, 2003.
[21]  B. Kesanli and W. Lin, “Chiral porous coordination networks: rational design and applications in enantioselective processes,” Coordination Chemistry Reviews, vol. 246, no. 1-2, pp. 305–326, 2003.
[22]  S. Kitagawa, R. Kitaura, and S. I. Noro, “Functional porous coordination polymers,” Angewandte Chemie International Edition, vol. 43, no. 18, pp. 2334–2375, 2004.
[23]  S. R. Batten and R. Robson, “Interpenetrating nets: ordered, periodic entanglement,” Angewandte Chemie International Edition, vol. 37, pp. 1460–1494, 1998.
[24]  S. Leininger, B. Olenyuk, and P. J. Stang, “Self-assembly of discrete cyclic nanostructures mediated by transition metals,” Chemical Reviews, vol. 100, no. 3, pp. 853–908, 2000.
[25]  G. F. Swiegers and T. J. Malefetse, “New self-assembled structural motifs in coordination chemistry,” Chemical Reviews, vol. 100, no. 9, pp. 3483–3537, 2000.
[26]  B. J. Holliday and C. A. Mirkin, “Strategies for the construction of supramolecular compounds through coordination chemistry,” Angewandte Chemie International Edition, vol. 40, pp. 2022–2043, 2001.
[27]  M. Eddaoudi, D. B. Moler, H. Li et al., “Modular chemistry:? secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks,” Accounts of Chemical Research, vol. 34, no. 4, pp. 319–330, 2001.
[28]  D. L. Caulder and K. N. Raymond, “Supermolecules by design,” Accounts of Chemical Research, vol. 32, no. 11, pp. 975–982, 1999.
[29]  Y. Rodíguez-Martín, M. Hernández-Molina, F. S. Delgado et al., “Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets,” CrystEngComm, vol. 4, pp. 522–535, 2002.
[30]  S. R. Batten and K. S. Murray, “Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide,” Coordination Chemistry Reviews, vol. 246, no. 1-2, pp. 103–130, 2003.
[31]  S. R. Batten, P. Jensen, C. J. Kepert et al., “Syntheses, structures and magnetism of α-Mn(dca)2, [Mn(dca)2(H2O)2]·H2O, [Mn(dca)2(C2H5OH)2]·(CH3)2CO, [Fe(dca)2(CH3OH)2],” Journal of the Chemical Society, no. 17, pp. 2987–2997, 1999.
[32]  I. Dasna, S. Golhen, L. Ouahab, O. Pe?a, J. Guillevic, and M. Fettouhi, “1-D mixed stack of coordinated and uncoordinated radicals in (NITpPy)4[N(CN)2]2 (NITpPy?=?nitronyl nitroxide radical),” Journal of the Chemical Society, Dalton Transactions, no. 2, pp. 129–132, 2000.
[33]  G. A. van Albada, M. E. Quiroz-Castro, I. Mutikainen, U. Turpeinen, and J. Reedijk, “The first structural evidence of a polymeric Cu(II) compound with a bridging dicyanamide anion: X-ray structure, spectroscopy and magnetism of catena-[polybis(2-aminopyrimidine)copper(II)-bis(μ-dicyanamido)],” Inorganica Chimica Acta, vol. 298, no. 2, pp. 221–225, 2000.
[34]  A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, “Two new one-dimensional compounds with end-to-end dicyanamide as a bridging ligand: syntheses and structural characterization of trans-[Mn(4-bzpy)2(N(CN)2)2]n and cis-[Mn(Bpy)(N(CN)2)2]n, (4-bzpy?=?4-benzoylpyridine; bp?=?2,2′-bipyridyl),” Inorganic Chemistry, vol. 39, no. 8, pp. 1668–1673, 2000.
[35]  J. H. Luo, M. C. Hong, R. Cao et al., “Syntheses and crystal structures of cadmium(II) coordination polymers with end-to-end dicyanamide bridges,” Polyhedron, vol. 21, no. 8, pp. 893–898, 2002.
[36]  S. Martín, M. G. Barandika, J. I. R. de Larramendi et al., “Structural analysis and magnetic properties of the 1D and 3D compounds [Mn(dca)2nbipym] (M?=?Mn, Cu; dca?=?dicyanamide; bipym?=?bipyrimidine; n?=?1, 2),” Inorganic Chemistry, vol. 40, no. 15, pp. 3687–3692, 2001.
[37]  I. Dasna, S. Golhen, L. Ouahab, N. Daro, and J. P. Sutter, “Synthesis, X-ray crystal structures and magnetic properties of CuII and MnII complexes containing imino nitroxide radicals and a dicyanamide anion,” New Journal of Chemistry, vol. 25, no. 12, pp. 1572–1576, 2001.
[38]  B. Vangdal, J. Carranza, F. Lloret, M. Julve, and J. Sletten, “Syntheses, crystal structures and magnetic properties of copper(II) dicyanamide complexes; dinuclear, chain and ladder compounds,” Journal of the Chemical Society, Dalton Transactions, no. 4, pp. 566–574, 2002.
[39]  J. Carranza, C. Brennan, J. Sletten, F. Lloret, and M. Julve, “Three one-dimensional systems with end-to-end dicyanamide bridges between copper(II) centres: structural and magnetic properties,” Journal of the Chemical Society, Dalton Transactions, no. 16, pp. 3164–3170, 2002.
[40]  S. Dalai, P. S. Mukherjee, E. Zangrando, and N. Ray Chaudhuri, “Synthesis, crystal structure and magnetic properties of two new dicyanamide bridged 2D and 1D complexes of Mn(II),” New Journal of Chemistry, vol. 26, no. 9, pp. 1185–1189, 2002.
[41]  M. Du, X. J. Zhao, S. R. Batten, and J. Ribas, “From 1-D coordination polymers to 3-D hydrogen-bonding networks:?crystal engineering and magnetism of ?dca?cyanopyridine supramolecular systems (dca?=?dicyanamide, ),” Crystal Growth and Design, vol. 5, pp. 901–909, 2005.
[42]  M. Du, X.G. Wang, Z. H. Zhang, L. F. Tang, and X. J. Zhang, “Solvent-directed layered Co(II) coordination polymers with unusual solid-state properties: from a nanoporous framework to the dense polythreading 3-D aggregation,” CrystEngComm, vol. 8, pp. 788–793, 2006.
[43]  C. R. Kmety, J. L. Manson, Q. Z. Huang et al., “Magnetic Phase Transitions in [N(CN)2]2,” Molecular Crystals and Liquid Crystals Science and Technology A, vol. 334, pp. 631–640, 1999.
[44]  J. L. Manson, C. R. Kmety, Q. Z. Huang et al., “Structure and magnetic ordering of [N(CN)2]2 (M?=?Co, Ni),” Chemistry of Materials, vol. 10, no. 9, pp. 2552–2560, 1998.
[45]  S. R. Batten, P. Jensen, B. Moubaraki, K. S. Murray, and R. Robson, “Structure and molecular magnetism of the rutile-related compounds M(dca)2, M?=? , , , dca?=?dicyanamide, ,” Chemical Communications, no. 3, pp. 439–440, 1998.
[46]  M. Kurmoo and C. J. Kepert, “Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}-,” New Journal of Chemistry, vol. 22, no. 12, pp. 1515–1524, 1998.
[47]  J. L. Manson, C. R. Kmety, F. Palacio, A. J. Epstein, and J. S. Miller, “Low-field remanent magnetization in the weak ferromagnet Mn[N(CN)2]2. Evidence for spin-flop behavior,” Chemistry of Materials, vol. 13, no. 3, pp. 1068–1073, 2001.
[48]  C. R. Kmety, Q. Huang, J. W. Lynn et al., “Noncollinear antiferromagnetic structure of the molecule-based magnet Mn[N(CN)2]2,” Physical Review B, vol. 62, no. 9, pp. 5576–5588, 2000.
[49]  C. X. Zhang, Z. Q. Liu, D. Z. Liao, and S. P. Yan, “A novel ferromagnetic coupling one-dimensional complex {Cu(II)(NIT3Py)2[N(CN)2]2(H2O)2},” Inorganica Chimica Acta, vol. 357, no. 2, pp. 376–380, 2004.
[50]  D. Ghoshal, A. K. Ghosh, J. Ribas et al., “Synthesis, crystal structure, and magnetic behavior of two dicyanamido-bridged complexes of manganese(II): effect of weak interaction in carving regular geometry,” Crystal Growth and Design, vol. 5, no. 3, pp. 941–947, 2005.
[51]  B. W. Sun, S. Gao, B. Q. Ma, and Z. M. Wang, “Syntheses, structures and magnetic properties of 1-D coordination polymers containing both dicyanamide and 2-pyrrolidone,” Inorganic Chemistry Communications, vol. 4, no. 2, pp. 72–75, 2001.
[52]  J. L. Manson, A. M. Arif, C. D. Incarvito, L. M. Liable-Sands, A. L. Rheingold, and J. S. Miller, “Structures and magnetic properties of novel 1-D coordination polymers containing both dicyanamide and pyridine-type ligands,” Journal of Solid State Chemistry, vol. 145, no. 2, pp. 369–378, 1999.
[53]  W. Dong, M. Liang, Y. Q. Sun, and Z. Q. Liu, “Syntheses and structures of two 1-D complexes, [Co(dmf)2NCNCN)2] and [Cu(bipy)(NCNCN)]ClO4 with bridging dicyanamide ligands,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 629, no. 14, pp. 2443–2445, 2003.
[54]  A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, “Syntheses, structures and magnetic properties of the dicyanamide (dca) polynuclear compounds [Mn(ac)(terpy)(μ1,5-dca)]n, [Mn(pdz)2(μ1,5-dca)2]n and [{Mn(dca)(terpy)(MeOH)}2(μ-terephthalate)],” Inorganica Chimica Acta, vol. 340, pp. 163–169, 2002.
[55]  A. Escuer, F. A. Mautner, N. Sanz, and R. Vicente, “Two new one-dimensional compounds with end-to-end dicyanamide as a bridging ligand: syntheses and structural characterization of trans-[Mn(4-bzpy)2(N(CN)2)2]n and cis-[Mn(Bpy)(N(CN)2)2]n, (4-bzpy?=?4-benzoylpyridine; bpy = 2,2′-bipyridyl),” Inorganic Chemistry, vol. 39, pp. 1668–1673, 2000.
[56]  S. Dalai, P. S. Mukherjee, E. Zangrando, and N. Ray Chaudhuri, “Synthesis, crystal structure and magnetic properties of two new dicyanamide bridged 2D and 1D complexes of Mn(II),” New Journal of Chemistry, vol. 26, no. 9, pp. 1185–1189, 2002.
[57]  A. J. Zhou, L. L. Zheng, and M. L. Tong, “Catena-Poly[[dimethanolcobalt(II)]-di- -1, 5-dicyanamido],” Acta Crystallographica, vol. E60, pp. m1254–m1255, 2004.
[58]  S. R. Batten, P. Jensen, C. J. Kepert et al., “Syntheses, structures and magnetism of α-Mn(dca)2, [Mn(dca)2(H2O)2]·H2O, [Mn(dca)2(C2H5OH)2]·(CH3)2CO, [Fe(dca)2(CH3OH)2],” Journal of the Chemical Society, Dalton Transactions, no. 17, pp. 2987–2997, 1999.
[59]  D. Armentano, G. de Munno, F. Guerra, J. Faus, F. Lloret, and M. Julve, “2,2′-Bipyrimidine- and 2,3-bis(2-pyridyl)pyrazine-containing manganese(II) compounds: structural and magnetic properties,” Dalton Transactions, no. 24, pp. 4626–4634, 2003.
[60]  S. Konar, S. Dalai, P. S. Mukherjee, M. G. B. Drew, J. Ribas, and N. R. Chaudhuri, “Two new NiII complexes with μ1,5-dicyanamide as bridging ligand,” Inorganica Chimica Acta, vol. 358, no. 4, pp. 957–963, 2005.
[61]  J. L. Manson, J. A. Schlueter, and C. L. Nygren, “Mn(dca)2(pym)2 and Mn(dca)2(pym)(H2O) {dca?=?dicyanamide; pym?=?pyrimidine}: new coordination polymers exhibiting 1- and 2-D topologies,” Dalton Transactions, vol. 2007, no. 6, pp. 646–652, 2007.
[62]  A. Q. Wu, F. K. Zheng, L. Z. Cai, G. C. Guo, and J. S. Huang, “Syntheses and crystal structures of two novel 1-D metal complexes with dicyanamide: [Zn(pheen)(dca)2]n and [Cu(quin)2(dca)2]n,” Chinese Journal of Structural Chemistry, vol. 23, p. 1143, 2004.
[63]  J. H. Luo, M. C. Hong, R. Cao et al., “Syntheses and crystal structures of cadmium(II) coordination polymers with end-to-end dicyanamide bridges,” Polyhedron, vol. 21, no. 8, pp. 893–898, 2002.
[64]  H. L. Sun, S. Gao, B. Q. Ma, G. Su, and S. R. Batten, “Structures and magnetism of a series Mn(II) coordination polymers containing pyrazine-dioxide derivatives and different anions,” Crystal Growth and Design, vol. 5, no. 1, pp. 269–277, 2005.
[65]  J. L. Manson, J. Y. Gu, J. A. Schlueter, and H. H. Wang, “Structures and magnetic behavior of 1-, 2-, and 3D coordination polymers in the Cu(II)-dicyanamide-pyrimidine family,” Inorganic Chemistry, vol. 42, pp. 3950–3955, 2003.
[66]  P. Jensen, S. R. Batten, B. Moubaraki, and K. S. Murray, “Syntheses, crystal structures, and magnetic properties of first row transition metal coordination polymers containing dicyanamide and 4,4′-bipyridine,” Journal of the Chemical Society, Dalton Transactions, no. 19, pp. 3712–3722, 2002.
[67]  S. Triki, F. Thetiot, J. R. Galán-Mascarós, and J. S. Pala, “New compounds with bridging dicyanamide and bis-chelating 2,2′-bipyrimidine ligands: syntheses, structural characterisation and magnetic properties of the two-dimensional materials [Fe2(dca)4(bpym)]·H2O and [Fe2(dca)4(bpym)(H2O)2],” New Journal of Chemistry, vol. 25, pp. 954–958, 2001.
[68]  M. L. Tong, Y. M. Wu, Y. X. Tong, X. M. Chen, H. C. Chang, and S. Kitagawa, “Rational design of a ferromagnetic trinuclear copper(II) complex with a novel in-situ synthesised metalloligand,” European Journal of Inorganic Chemistry, vol. 2003, no. 13, pp. 2385–2388, 2003.
[69]  L. L. Zheng, W. X. Zhang, L. J. Qin, J. D. Leng, J. X. Lu, and M. L. Tong, “Isolation of a pentadentate ligand and stepwise synthesis, structures, and magnetic properties of a new family of homo- and heterotrinuclear complexes,” Inorganic Chemistry, vol. 46, pp. 9548–9557, 2007.
[70]  L. L. Zheng, H. X. Li, J. D. Leng, J. Wang, and M. L. Tong, “Two photoluminescent metal-organic frameworks constructed from Cd3(μ3-OH) cluster or 1D Zn5(μ3-OH)2(μ-OH)2 chain units and in situ formed Bis(tetrazole)amine ligands,” European Journal of Inorganic Chemistry, vol. 2008, no. 2, pp. 213–217, 2008.
[71]  L. L. Zheng, J. D. Leng, W. T. Liu, W. X. Zhang, J. X. Lu, and M. L. Tong, “Cu2+-mediated nucleophilic addition of different nucleophiles to dicyanamide—synthesis, structures, and magnetic properties of a family of mononuclear, trinuclear, hexanuclear, and polymeric copper(II) complexes,” European Journal of Inorganic Chemistry, vol. 2008, no. 29, pp. 4616–4624, 2008.
[72]  L. L. Zheng, C. K. Tan, and M. L. Tong, “Synthesis and crystal structures of Mn(II)/Co(II)- dicyanamide-4-(1H-imidazol-1-yl)aniline ternary complexs,” Chinese Journal of Inorganic Chemistry, vol. 22, pp. 1426–1430, 2006.
[73]  A. Igashira-Kamiyama, T. Kajiwara, T. Konno, and T. Ito, “Ferromagnetic coupling promoted by κ3N: κ2N bridging system,” Inorganic Chemistry, vol. 45, no. 16, pp. 6460–6466, 2006.
[74]  I. Castro-Rodriguez, K. Olsen, P. Gantzel, and K. Meyer, “Uranium complexes supported by an aryloxide functionalised triazacyclononane macrocycle: synthesis and characterisation of a six-coordinate U(III) species and insights into its reactivity,” Chemical communications, no. 23, pp. 2764–2765, 2002.
[75]  L. Brammer, “Metals and hydrogen bonds,” Dalton Transactions, no. 16, pp. 3145–3157, 2003.
[76]  H. W. Roesky and M. Andruh, “The interplay of coordinative, hydrogen bonding and π-π stacking interactions in sustaining supramolecular solid-state architectures.: a study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons,” Coordination Chemistry Reviews, vol. 236, pp. 91–119, 2003.
[77]  G. M. Sheldrick, SADABS 2.05, University G?ttingen.
[78]  SHELXTL 6.10, Bruker Analytical Instrumentation, Madison, Wis, USA, 2000.
[79]  T. C. Stamatatos, K. A. Abboud, W. Wernsdorfer, and G. Christou, “High-nuclearity, high-symmetry, high-spin molecules: a mixed-valence Mn10 cage possessing rare T symmetry and an S?=?22 ground State,” Angewandte Chemie International Edition, vol. 45, no. 25, pp. 4134–4137, 2006.
[80]  J. Yoo, A. Yamaguchi, M. Nakano et al., “Mixed-valence tetranuclear manganese single-molecule magnets,” Inorganic Chemistry, vol. 40, no. 18, pp. 4604–4616, 2001.
[81]  D. N. Hendrickson, G. Christou, H. Ishimoto et al., “Magnetization tunneling in single-molecule magnets,” Polyhedron, vol. 20, no. 11–14, pp. 1479–1488, 2001.
[82]  L. Lecren, O. Roubeau, C. Coulon et al., “Slow relaxation in a one-dimensional rational assembly of antiferromagnetically coupled [Mn4] single-molecule magnets,” Journal of the American Chemical Society, vol. 127, no. 49, pp. 17353–17363, 2005.
[83]  H. Miyasaka, K. Nakata, L. Lecren et al., “Two-dimensional networks based on Mn4 complex linked by dicyanamide anion: from single-molecule magnet to classical magnet behavior,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3770–3783, 2006.
[84]  H. Miyasaka, K. Nakata, K. Sugiura, M. Yamashita, and R. Clérac, “A three-dimensional ferrimagnet composed of mxed-valence Mn4 clusters linked by an {Mn[N(CN)2]6}4? unit,” Angewandte Chemie International Edition, vol. 43, no. 6, pp. 707–711, 2004.
[85]  J. Yoo, W. Wernsdorfer, E. C. Yang, M. Nakano, A. L. Rheingold, and D. N. Hendrickson, “One-dimensional chain of tetranuclear manganese single-molecule magnets,” Inorganic Chemistry, vol. 44, no. 10, pp. 3377–3379, 2005.
[86]  H. K. K?hler, A. Kolbe, and G. Lux, “Metall-pseudohalogenide. 27. Zur struktur der dicyanamide zweiwertiger 3d-Metalle M(N(CN)2)2,” Zeitschrift für Anorganische und Allgemeine Chemie, vol. 428, pp. 103–112, 1977.
[87]  G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford, UK, 1999.
[88]  B. W. Sun, S. Gao, B. Q. Ma, D. Z. Niu, and Z. M. Wang, “Syntheses, structures and magnetic properties of three-dimensional co-ordination polymers constructed by dimer subunits,” Journal of the Chemical Society, Dalton Transactions, no. 22, pp. 4187–4191, 2000.
[89]  Z. M. Wang, B. W. Sun, J. Luo et al., “Bimetallic sandwiches assembled with chelated Cu/Zn cations and manganese dicyanamide polymeric ladders,” Polyhedron, vol. 22, no. 3, pp. 433–439, 2003.
[90]  B. W. Sun, S. Gao, B. Q. Ma, and Z. M. Wang, “Syntheses, structures and magnetic properties of 1-D coordination polymerscontaining both dicyanamide and 2-pyrrolidone,” Inorganica Chimica Acta, vol. 4, pp. 72–75, 2001.
[91]  Z. M. Wang, B. W. Sun, J. Luo et al., “Bimetallic sheet and 3D threefold interpenetrating diamond-like network constructed by chelate Cu cations and Mn dicyanamide polymeric chains. Synthesis, crystal structure, and magnetism of [Cu(L)2][Mn(dca)4] (L?=?ethylenediamine or 1,3-diaminopropane; dca?=?dicyanamide ),” Inorganica Chimica Acta, vol. 332, no. 1, pp. 127–134, 2002.
[92]  W. F. Yeung, S. Gao, W. T. Wong, and T. C. Lau, “Antiferromagnetic ordering in a novel five-connected 3-D polymer {Cu2(2,5-Me2pyz)[N(CN)2]4}n (2,5-Me2pyz = 2,5-dimethylpyrazine,” New Journal of Chemistry, vol. 26, pp. 523–525, 2002.
[93]  J. L. Manson, Q. Z. Huang, J. W. Lynn et al., “Long-range magnetic order in Mn[N(CN)2]2(pyz) {pyz?=?pyrazine}. Susceptibility, magnetization, specific heat, and neutron diffraction measurements and electronic structure calculations,” Journal of the American Chemical Society, vol. 123, no. 1, pp. 162–172, 2001.
[94]  P. M. van der Werff, S. R. Batten, P. Jensen, B. Moubaraki, and K. S. Murray, “Cation templation of anionic metal dicyanamide networks,” Inorganic Chemistry, vol. 40, pp. 1718–1722, 2001.
[95]  H. L. Sun, Z. M. Wang, and S. Gao, “Synthesis, crystal structures, and magnetism of cobalt coordination polymers based on dicyanamide and pyrazine-dioxide derivatives,” Inorganic Chemistry, vol. 44, no. 7, pp. 2169–2176, 2005.
[96]  J. Curély, F. Lloret, and M. Julve, Physical Review B, vol. 58, p. 1465, 1988.
[97]  D. Armentano, G. de Munno, F. Guerra, M. Julve, and F. Lloret, “Ligand effects on the structures of extended networks of dicyanamide-containing transition-metal ions,” Inorganic Chemistry, vol. 45, no. 12, pp. 4626–4636, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133