The facility layout approaches can generally be classified into two groups, constructive approaches and improvement approaches. All improvement procedures require an initial solution which has a significant impact on final solution. In this paper, we introduce a new technique for accruing an initial placement of facilities on extended plane. It is obtained by graph theoretic facility layout approaches and graph drawing algorithms. To evaluate the performance, this initial solution is applied to rectangular facility layout problem. The solution is improved using an analytical method. The approach is then tested on five instances from the literature. Test problems include three large size problems of 50, 100, and 125 facilities. The results demonstrate effectiveness of the technique especially for large size problems. 1. Introduction The facility layout problem seeks the best positions of facilities to optimize some objective. The common objective is to reduce material handling costs between the facilities. The problem has been modeled by a variety of approaches. A detailed review of the different problem formulations can be found in Singh and Sharma [1]. The facility layout problem is an optimization problem which arises in a variety of problems such as placing machines on a factory floor, VLSI design, and layout design of hospitals, schools. The facility layout approaches can generally be classified into two groups, constructive methods and improvement methods. In this paper, we consider the placement of facilities on an extended plane. Many improvement approaches have been proposed for this problem. All improvement procedures require an initial solution. Some approaches start from a good but infeasible solution [2–4]. These models contain a penalty component in their objective function. Hence, these approaches minimize objective function value for feasible solutions. But some approaches require a feasible initial solution. These approaches use a randomly generated initial solution [5, 6]. Mir and Imam [7] have proposed simulated annealing for a better initial solution. They have shown that a good initial solution has a significant impact on final solution. In this paper, we introduce a new technique for accruing an initial placement of facilities on an extended plane. The technique consists of two stages. In the first stage, a maximal planar graph (MPG) is obtained. In the second stage, the vertices of MPG are drawn on the plane by graph drawing algorithms. Then, vertices are replaced by facilities. Hence, an initial solution is obtained. In an MPG,
References
[1]
S. P. Singh and R. R. K. Sharma, “A review of different approaches to the facility layout problems,” International Journal of Advanced Manufacturing Technology, vol. 30, no. 5-6, pp. 425–433, 2006.
[2]
M. F. Anjos and A. Vannelli, “An attractor-repeller approach to floorplanning,” Mathematical Methods of Operations Research, vol. 56, no. 1, pp. 3–27, 2002.
[3]
I. Castillo and T. Sim, “A spring-embedding approach for the facility layout problem,” Journal of the Operational Research Society, vol. 55, no. 1, pp. 73–81, 2004.
[4]
Z. Drezner, “DISCON: a new method for the layout problem,” Operations Research, vol. 28, no. 6, pp. 1375–1384, 1980.
[5]
M. H. Imam and M. Mir, “Nonlinear programming approach to automated topology optimization,” Computer-Aided Design, vol. 21, no. 2, pp. 107–115, 1989.
[6]
M. H. Imam and M. Mir, “Automated layout of facilities of unequal areas,” Computers and Industrial Engineering, vol. 24, no. 3, pp. 355–366, 1993.
[7]
M. Mir and M. H. Imam, “Hybrid optimization approach for layout design of unequal-area facilities,” Computers and Industrial Engineering, vol. 39, no. 1-2, pp. 49–63, 2001.
L. Foulds, Graph Theory Applications, Springer, New York, NY, USA, 1992.
[10]
M. M. D. Hassan and G. L. Hogg, “A review of graph theory application to the facilities layout problem,” Omega, vol. 15, no. 4, pp. 291–300, 1987.
[11]
M. M. D. Hassan and G. L. Hogg, “On converting a dual graph into a block layout,” International Journal of Production Research, vol. 27, no. 7, pp. 1149–1160, 1989.
[12]
K. H. Watson and J. W. Giffin, “The vertex splitting algorithm for facilities layout,” International Journal of Production Research, vol. 35, no. 9, pp. 2477–2492, 1997.
[13]
S. A. Irvine and I. Rinsma-Melchert, “A new approach to the block layout problem,” International Journal of Production Research, vol. 35, no. 8, pp. 2359–2376, 1997.
[14]
P. S. Welgama, P. R. Gibson, and L. A. R. Al-Hakim, “Facilities layout: a knowledge-based approach for converting a dual graph into a block layout,” International Journal of Production Economics, vol. 33, no. 1–3, pp. 17–30, 1994.
[15]
M. A. Jokar and A. S. Sangchooli, “Constructing a block layout by face area,” The International Journal of Advanced Manufacturing Technology, vol. 54, no. 5–8, pp. 801–809, 2011.
[16]
L. R. Foulds, P. B. Gibbons, and J. W. Giffin, “Facilities layout adjacency determination: an experimental comparison of three graph theoretic heuristics,” Operations Research, vol. 33, no. 5, pp. 1091–1106, 1985.
[17]
E. G. John and J. Hammond, “Maximally weighted graph theoretic facilities design planning,” International Journal of Production Research, vol. 38, no. 16, pp. 3845–3859, 2000.
[18]
S. G. Boswell, “TESSA—a new greedy heuristic for facilities layout planning,” International Journal of Production Research, vol. 30, no. 8, pp. 1957–1968, 1992.
[19]
L. R. Foulds and D. F. Robinson, “Graph theoretic heuristics for the plant layout problem,” International Journal of Production Research, vol. 16, no. 1, pp. 27–37, 1978.
[20]
I. H. Osman, “A tabu search procedure based on a random Roulette diversification for the weighted maximal planar graph problem,” Computers and Operations Research, vol. 33, no. 9, pp. 2526–2546, 2006.
[21]
I. H. Osman, B. Al-Ayoubi, and M. Barake, “A greedy random adaptive search procedure for the weighted maximal planar graph problem,” Computers and Industrial Engineering, vol. 45, no. 4, pp. 635–651, 2003.
[22]
J. M. Boyer and W. J. Myrvold, “On the cutting edge: simplified O(n) planarity by edge addition,” Journal of Graph Algorithms and Applications, vol. 8, no. 3, pp. 241–273, 2004.
[23]
G. Di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.
[24]
M. Chrobak and T. H. Payne, “A linear-time algorithm for drawing a planar graph on a grid,” Information Processing Letters, vol. 54, no. 4, pp. 241–246, 1995.
[25]
S. Heragu, Facilities Design, Iuniverse Inc., 2006.