Better utilization of manpower, providing product flexibility, increasing productivity, decreasing lead time, reduction in handling cost, increased efficiency of material flow, and enhancement of production process are some of the most important issues influencing material handling (MH) equipment selection decision. As a wide variety of MH equipment is available today, selection of the proper equipment for a designed manufacturing system is a complicated task. Selection of suitable MH equipment for a typical handling environment is found to be a multicriteria decision-making (MCDM) problem. As the selection process is found to be unstructured, characterized by domain dependent knowledge, there is a need to apply an efficient MCDM tool to select the most suitable MH equipment for the given application. This paper applies weighted utility additive (WUTA) method to solve an MH equipment selection problem. The ranking obtained using the WUTA method is compared with that derived by the past researchers which proves its potentiality, applicability, and accuracy to solve complex decision-making problems. 1. Introduction Material handling (MH) is an activity that uses the right method to provide the right amount of the right material at the right place, at the right time, in the right sequence, in the right position, and at the right cost [1]. An MH system is responsible for transporting materials between workstations with minimum obstruction and joins all the workstations and workshops in a manufacturing system by acting as a basic integrator. The MH task accounts for 30–75% of the total cost of a product, and efficient MH can be responsible for reducing the manufacturing system operations cost by 15–30% [2]. These figures justify the importance of MH cost as an element in improving the cost structure of a manufacturing organization. An efficient MH system greatly improves the competitiveness of a product through the reduction of handling cost, enhances the production process, increases production and system flexibility, increases efficiency of material flow, improves facility utilization, provides effective utilization of manpower, and decreases lead time [3]. The functions performed by MH equipment can be classified into four broad categories, that is, (a) transport, (b) positioning, (c) unit formation, and (d) storage. Usually, all the MH functions are composed of one or more combinations of these four primary functions. Equipment in transport category simply moves materials from one point to another, which includes conveyors, industrial trucks, cranes, and
References
[1]
J. A. Tompkins, Facilities Planning, John Wiley and Sons, New York, NY, USA, 2010.
[2]
O. Kulak, “A decision support system for fuzzy multi-attribute selection of material handling equipments,” Expert Systems with Applications, vol. 29, no. 2, pp. 310–319, 2005.
[3]
B. M. Beamon, “Performance, reliability, and performability of material handling systems,” International Journal of Production Research, vol. 36, no. 2, pp. 377–393, 1998.
[4]
S. Chakraborty and D. Banik, “Design of a material handling equipment selection model using analytic hierarchy process,” International Journal of Advanced Manufacturing Technology, vol. 28, no. 11-12, pp. 1237–1245, 2006.
[5]
S. Sujono and R. S. Lashkari, “A multi-objective model of operation allocation and material handling system selection in FMS design,” International Journal of Production Economics, vol. 105, no. 1, pp. 116–133, 2007.
[6]
S. Onut, S. S. Kara, and S. Mert, “Selecting the suitable material handling equipment in the presence of vagueness,” International Journal of Advanced Manufacturing Technology, vol. 44, no. 7-8, pp. 818–828, 2009.
[7]
D. Komljenovic and V. Kecojevic, “Multi-attribute selection method for materials handling equipment,” International Journal of Industrial and Systems Engineering, vol. 4, no. 2, pp. 151–173, 2009.
[8]
G. Tuzkaya, B. Gülsün, C. Kahraman, and D. ?zgen, “An integrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application,” Expert Systems with Applications, vol. 37, no. 4, pp. 2853–2863, 2010.
[9]
V. B. Sawant, S. S. Mohite, and R. Patil, “A decision-making methodology for automated guided vehicle selection problem using a preference selection index method,” Communications in Computer and Information Science, vol. 145, pp. 176–181, 2011.
[10]
K. D. Maniya and M. G. Bhatt, “A multi-attribute selection of automated guided vehicle using the AHP/M-GRA technique,” International Journal of Production Research, vol. 49, pp. 6107–6124, 2011.
[11]
P. S. Welgama and P. R. Gibson, “A hybrid knowledge based/optimization system for automated selection of materials handling system,” Computers and Industrial Engineering, vol. 28, no. 2, pp. 205–217, 1995.
[12]
H. K. Chu, P. J. Egbelu, and C. T. Wu, “ADVISOR: a computer-aided material handling equipment selection system,” International Journal of Production Research, vol. 33, no. 12, pp. 3311–3329, 1995.
[13]
F. T. S. Chan, R. W. L. Ip, and H. Lau, “Integration of expert system with analytic hierarchy process for the design of material handling equipment selection system,” Journal of Materials Processing Technology, vol. 116, no. 2-3, pp. 137–145, 2001.
[14]
R. Yaman, “A knowledge-based approach for selection of material handling equipment and material handling system pre-design,” Turkish Journal of Engineering and Environmental Sciences, vol. 25, no. 4, pp. 267–278, 2001.
[15]
D. J. Fonseca, G. Uppal, and T. J. Greene, “A knowledge-based system for conveyor equipment selection,” Expert Systems with Applications, vol. 26, no. 4, pp. 615–623, 2004.
[16]
C. Cho and P. J. Edbelu, “Design of a web-based integrated material handling system for manufacturing applications,” International Journal of Production Research, vol. 43, pp. 375–403, 2005.
[17]
S. H. L. Mirhosseyni and P. Webb, “A hybrid fuzzy knowledge-based expert system and genetic algorithm for efficient selection and assignment of material handling equipment,” Expert Systems with Applications, vol. 36, no. 9, pp. 11875–11887, 2009.
[18]
E. Jacquet-Lagreze and J. Siskos, “Assessing a set of additive utility functions for multicriteria decision-making, the UTA method,” European Journal of Operational Research, vol. 10, no. 2, pp. 151–164, 1982.
[19]
Z. Hatush and M. Skitmore, “Contractor selection using multicriteria utility theory: an additive model,” Building and Environment, vol. 33, no. 2-3, pp. 105–115, 1998.
[20]
M. Beuthe and G. Scannella, “Comparative analysis of UTA multicriteria methods,” European Journal of Operational Research, vol. 130, no. 2, pp. 246–262, 2001.
[21]
N. Manouselis and D. Sampson, “Multi-criteria decision making for broker agents in e-learning environments,” Operational Research, vol. 2, pp. 347–361, 2002.
[22]
R. V. Rao, Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods, Springer, London, UK, 2007.