Technology is becoming pervasive across all facets of our lives today. Technology innovation leading to development of new products and enhancement of features in existing products is happening at a faster pace than ever. It is becoming difficult for the customers to keep up with the deluge of new technology. This trend has resulted in gross increase in use of new materials and decreased customers' interest in relatively older products. This paper deals with a novel model in which the stationary demand is fulfilled by remanufactured products along with newly manufactured products. The current model is based on the assumption that the returned items from the customers can be remanufactured at a fixed rate. The remanufactured products are assumed to be as good as the new ones in terms of features, quality, and worth. A methodology is used for the calculation of optimum level for the newly manufactured items and the optimum level of the remanufactured products simultaneously. The model is formulated depending on the relationship between different parameters. An interpretive-modelling-based approach has been employed to model the reverse logistics variables typically found in supply chains (SCs). For simplicity of calculation a deterministic approach is implemented for the proposed model. 1. Introduction Gradual increase in the demand of goods has resulted in the reduction of nonrenewable resources with a high percentage of land fill of waste. This has shifted the modus operandi of supply chain, largely focusing on recovery options for the end of life products and products returned from various stages. Reverse logistics is the process of moving goods from their typical final destination for the purpose of capturing value or proper disposal. It is a process whereby supply chains can become more environments friendly through recycling and reusing thereby reducing the amount of virgin materials used. It is observed that all the sales transactions carried in many product-based supply chains are not final with the payment recovery at the point of sales. There is a need to cope up with returns of the product due to recalls, warranty claims, service returns, recovery at the end-of-use disposal at the end-of-life, and so forth. Thus, the reverse distribution, which is from consumer to producer, has gained tremendous importance in the recent years. Reverse logistics stands for all the operations related to reuse of products coming back from customers, excess inventory of products and materials including collection, disassembly and processing of used products,
References
[1]
L. Brennan, S. M. Gupta, and K. N. Taleb, “Operations planning issues in an assembly/disassembly environment,” International Journal of Operations & Production Management, vol. 14, no. 9, pp. 57–67, 1994.
[2]
R. Frankel, “The role and relevance of refocused inventory: supply chain management solutions,” Business Horizons, vol. 49, no. 4, pp. 275–286, 2006.
[3]
Arshinder, A. Kanda, and S. G. Deshmukh, “Supply chain coordination: perspectives, empirical studies and research directions,” International Journal of Production Economics, vol. 115, no. 2, pp. 316–335, 2008.
[4]
E. A. Silver, “Inventory management: an overview, Canadian publications, practical applications and suggestions for future research,” INFOR, vol. 46, no. 1, pp. 15–28, 2008.
[5]
H. K. Alfares, “Inventory model with stock-level dependent demand rate and variable holding cost,” International Journal of Production Economics, vol. 108, no. 1-2, pp. 259–265, 2007.
[6]
I. Dobos and K. Richter, “An extended production/recycling model with stationary demand and return rates,” International Journal of Production Economics, vol. 90, no. 3, pp. 311–323, 2004.
[7]
Y. H. Oh and H. Hwang, “Deterministic inventory model for recycling system,” Journal of Intelligent Manufacturing, vol. 17, no. 4, pp. 423–428, 2006.
[8]
S. G. Koh, H. Hwang, K. I. Sohn, and C. S. Ko, “An optimal ordering and recovery policy for reusable items,” Computers and Industrial Engineering, vol. 43, no. 1-2, pp. 59–73, 2002.
[9]
M. C. Mabini, L. M. Pintelon, and L. F. Gelders, “EOQ type formulations for controlling repairable inventories,” International Journal of Production Economics, vol. 28, no. 1, pp. 21–33, 1992.
[10]
K. Richter, “The EOQ repair and waste disposal model with variable setup numbers,” European Journal of Operational Research, vol. 95, no. 2, pp. 313–324, 1996.
[11]
K. Richter, “The extended EOQ repair and waste disposal model,” International Journal of Production Economics, vol. 45, no. 1–3, pp. 443–447, 1996.
[12]
R. H. Teunter and D. Vlachos, “On the necessity of a disposal option for returned items that can be remanufactured,” International Journal of Production Economics, vol. 75, no. 3, pp. 257–266, 2002.
[13]
R. Teunter and E. Van der Laan, “On the non-optimality of the average cost approach for inventory models with remanufacturing,” International Journal of Production Economics, vol. 79, no. 1, pp. 67–73, 2002.
[14]
K. Richter and M. Sombrutzki, “Remanufacturing planning for the reverse Wagner/Whitin models,” European Journal of Operational Research, vol. 121, no. 2, pp. 304–315, 2000.
[15]
S. L. Chung, H. M. Wee, and P. C. Yang, “Optimal policy for a closed-loop supply chain inventory system with remanufacturing,” Mathematical and Computer Modelling, vol. 48, no. 5-6, pp. 867–881, 2008.