This paper studies the effect of inflation and customer returns on joint pricing and inventory control for deteriorating items. We adopt a price and time dependent demand function, also the customer returns are considered as a function of both price and demand. Shortage is allowed and partially backlogged. The main objective is determining the optimal selling price, the optimal replenishment cycles, and the order quantity simultaneously such that the present value of total profit in a finite time horizon is maximized. An algorithm has been presented to find the optimal solution. Finally, we solve a numerical example to illustrate the solution procedure and the algorithm. 1. Introduction Recently, many researchers have studied the problem of joint pricing and inventory control for deteriorating items. Generally, deterioration is defined as decay, damage, spoilage, evaporation, and loss of utility of the product. Most physical goods undergo decay or deterioration over time such as medicines, volatile liquids, blood banks, and others [1]. The first attempt to describe optimal ordering policies for deteriorating items was made by Ghare and Schrader [2]. Later, Covert and Philip [3] derived the model with variable deteriorating rate of two-parameter Weibull distribution. Goyal and Giri [4] presented a detailed review of deteriorating inventory literatures. Abad [5, 6] considered a pricing and lot-sizing problem for a perishable good under exponential decay and partial backlogging. Dye [7] proposed the joint pricing and ordering policies for a deteriorating inventory with price-dependent demand and partial backlogging. Dye et al. [8] developed an inventory and pricing strategy for deteriorating items with shortages when demand and deterioration rate are continuous and differentiable function of price and time, respectively. Chang et al. [9] introduced a deteriorating inventory model with price-time-dependent demand and partial backlogging. Nakhai and Maihami [10] developed the joint pricing and ordering policies for deteriorating items with partial backlogging where the demand is considered as a function of both price and time. Tsao and Sheen [11] proposed the problem of dynamic pricing and replenishment for a deteriorating item under the supplier’s trade credit and the retailer’s promotional effort. Sarkar [12] extended the model with finite replenishment rate, stock-dependent demand, imperfect production, and delay in payments with two progressive periods. Sarkar [13] proposed an EOQ (economic order quantity) model for finite replenishment rate with delay
References
[1]
H. M. Wee, “Economic production lot size model for deteriorating items with partial back-ordering,” Computers and Industrial Engineering, vol. 24, no. 3, pp. 449–458, 1993.
[2]
P. M. Ghare and G. H. Schrader, “A model for exponentially decaying inventory system,” International Journal of Production Research, vol. 21, pp. 449–460, 1963.
[3]
R. P. Covert and G. C. Philip, “An EOQ model for items with Weibull distribution deterioration,” AIIE Transactions, vol. 5, no. 4, pp. 323–326, 1973.
[4]
S. K. Goyal and B. C. Giri, “Recent trends in modeling of deteriorating inventory,” European Journal of Operational Research, vol. 134, no. 1, pp. 1–16, 2001.
[5]
P. L. Abad, “Optimal pricing and lot-sizing under conditions of perishability and partial backordering,” Management Science, vol. 42, no. 8, pp. 1093–1104, 1996.
[6]
P. L. Abad, “Optimal price and order size for a reseller under partial backordering,” Computers and Operations Research, vol. 28, no. 1, pp. 53–65, 2001.
[7]
C. Y. Dye, “Joint pricing and ordering policy for a deteriorating inventory with partial backlogging,” Omega, vol. 35, no. 2, pp. 184–189, 2007.
[8]
C. Y. Dye, L. Y. Ouyang, and T. P. Hsieh, “Inventory and pricing strategies for deteriorating items with shortages: a discounted cash flow approach,” Computers and Industrial Engineering, vol. 52, no. 1, pp. 29–40, 2007.
[9]
H. J. Chang, J. T. Teng, L. Y. Ouyang, and C. Y. Dye, “Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging,” European Journal of Operational Research, vol. 168, no. 1, pp. 51–64, 2006.
[10]
K. I. Nakhai and R. Maihami, “Joint pricing and inventory control for deteriorating items with partial backlogging,” International Journal of Industrial Engineering and Production Management, vol. 21, pp. 167–177, 2011.
[11]
Y. C. Tsao and G. J. Sheen, “Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments,” Computers and Operations Research, vol. 35, no. 11, pp. 3562–3580, 2008.
[12]
B. Sarkar, “An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production,” Applied Mathematics and Computation, vol. 218, pp. 8295–8308, 2012.
[13]
B. Sarkar, “An EOQ model with delay in payments and time varying deterioration rate,” Mathematical and Computer Modelling, vol. 55, pp. 367–377, 2012.
[14]
B. K. Sett, B. Sarkar, and A. Goswami, “A two-warehouse inventory model with increasing demand and time varying deterioration,” Scientia Iranica E, vol. 19, no. 6, pp. 1969–1977, 2012.
[15]
B. Sarkar, S. S. Sana, and K. Chaudhuri, “An economic production quantity model with stochastic demand in an imperfect production system,” International Journal of Services and Operations Management, vol. 9, no. 3, pp. 259–283, 2011.
[16]
J. A. Buzacott, “Economic order quantity with inflation,” Operational Research Quarterly, vol. 26, no. 3, pp. 553–558, 1975.
[17]
R. B. Misra, “A note on optimal inventory management under inflation,” Naval Research Logistics Quarterly, vol. 26, no. 1, pp. 161–165, 1979.
[18]
F. Jolai, R. Tavakkoli-Moghaddam, M. Rabbani, and M. R. Sadoughian, “An economic production lot size model with deteriorating items, stock-dependent demand, inflation, and partial backlogging,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 380–389, 2006.
[19]
K. S. Park, “Inflationary effect on EOQ under trade-credit financing,” International Journal on Policy and Information, vol. 10, no. 2, pp. 65–69, 1986.
[20]
T. K. Datta and A. K. Pal, “Effects of inflation and time-value of money on an inventory model with linear time-dependent demand rate and shortages,” European Journal of Operational Research, vol. 52, no. 3, pp. 326–333, 1991.
[21]
S. Goel, Y. P. Gupta, and C. R. Bector, “Impact of inflation on economic quantity discount schedules to increase vendor profits,” International Journal of Systems Science, vol. 22, no. 1, pp. 197–207, 1991.
[22]
R. W. Hall, “Price changes and order quantities: impacts of discount rate and storage costs,” IIE Transactions, vol. 24, no. 2, pp. 104–110, 1992.
[23]
B. R. Sarker and H. Pan, “Effects of inflation and the time value of money on order quantity and allowable shortage,” International Journal of Production Economics, vol. 34, no. 1, pp. 65–72, 1994.
[24]
M. A. Hariga and M. Ben-Daya, “Optimal time varying lot-sizing models under inflationary conditions,” European Journal of Operational Research, vol. 89, no. 2, pp. 313–325, 1996.
[25]
I. Horowitz, “EOQ and inflation uncertainty,” International Journal of Production Economics, vol. 65, no. 2, pp. 217–224, 2000.
[26]
I. Moon and S. Lee, “Effects of inflation and time-value of money on an economic order quantity model with a random product life cycle,” European Journal of Operational Research, vol. 125, no. 3, pp. 558–601, 2000.
[27]
A. Mirzazadeh and A. R. Sarfaraz, “Constrained multiple items optimal order policy under stochastic inflationary conditions,” in Proceedings of the 2nd Annual International Conference on Industrial Engineering Application and Practice, pp. 725–730, San Diego, Calif, USA, November 1997.
[28]
J. K. Dey, S. K. Mondal, and M. Maiti, “Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money,” European Journal of Operational Research, vol. 185, no. 1, pp. 170–194, 2008.
[29]
A. Mirzazadeh, M. M. S. Esfahani, and S. M. T. F. Ghomi, “An inventory model under uncertain inflationary conditions, finite production rate and inflation-dependent demand rate for deteriorating items with shortages,” International Journal of Systems Science, vol. 40, no. 1, pp. 21–31, 2009.
[30]
H. M. Wee and S. T. Law, “Replenishment and pricing policy for deteriorating items taking into account the time-value of money,” International Journal of Production Economics, vol. 71, no. 1–3, pp. 213–220, 2001.
[31]
T. P. Hsieh and C. Y. Dye, “Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation,” Expert Systems With Applications, vol. 37, pp. 7234–7242, 2010.
[32]
B. Sarkar and I. Moon, “An EPQ model with inflation in an imperfect production system,” Applied Mathematics and Computation, vol. 217, no. 13, pp. 6159–6167, 2011.
[33]
B. Sarkar, S. S. Sana, and K. Chaudhuri, “An imperfect production process for time varying demand with inflation and time value of money—an EMQ model,” Expert Systems with Applications, vol. 38, no. 11, pp. 13543–13548, 2011.
[34]
B. Sarkar, S. S. Sana, and K. Chaudhuri, “A finite replenishment model with increasing demand under inflation,” International Journal of Mathematics and Operational Research, vol. 4, no. 2, pp. 347–385, 2010.
[35]
J. D. Hess and G. E. Mayhew, “Modeling merchandise returns in direct marketing,” Journal of Interactive Marketing, vol. 11, no. 2, pp. 20–35, 1997.
[36]
E. T. Anderson, K. Hansen, D. Simister, and L. K. Wang, “How are demand and returns related? Theory and empirical evidence,” Working Paper, Kellogg School of Management, Northwestern University, 2006.
[37]
J. Chen and P. C. Bell, “The impact of customer returns on pricing and order decisions,” European Journal of Operational Research, vol. 195, no. 1, pp. 280–295, 2009.
[38]
B. A. Pasternack, “Optimal pricing and returns policies for perishable commodities,” Marketing Science, vol. 4, no. 2, pp. 166–176, 1985.
[39]
S. X. Zhu, “Joint pricing and inventory replenishment decisions with returns and expediting,” European Journal of Operational Research, vol. 216, pp. 105–112, 2012.