全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluating Green Performance of Suppliers via Analytic Network Process and TOPSIS

DOI: 10.1155/2013/915241

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developments in environmental issues in the last few years have been forcing manufacturing companies to improve their environmental performances. Many firms developed integrated relationships with their suppliers to increase their environmental performance and to decrease their hazardous effects on the environment. Then, selecting suitable and green suppliers in the supply chain has become a key strategic consideration. A performance evaluation system for green suppliers is necessary to determine the suitability of suppliers to cooperate with the firm. Therefore, in this study, a model for evaluating green performance of suppliers is proposed, and a hybrid multicriteria decision making model is developed in order to evaluate green performance of the suppliers. The analytical network process technique is applied to handle the relationships and dependence of selection criteria and subcriteria and determine weights of the criteria. The technique for order preference by similarity to ideal solution is used to sequence the suppliers for ideal solution of the suppliers’ green performance evaluation problem. After a comprehensive literature survey, evaluation criteria of green performance for suppliers are determined. Finally, green performance of 18 suppliers of an automobile company was evaluated by this model. These 18 suppliers manufacture chassis and its components. 1. Introduction In recent years, because of growing worldwide awareness of environmental protection, increasing government regulations, and stronger public awareness in environmental protection, firms today cannot disregard environmental issues, and they have to pay attention to environmental issues in order to survive in the global market [1]. Therefore, in the world, there is a growing interest in the green supply chain management (GSCM), and the green issue has become more and more critical in supply chain management (SCM) [2]. Over the last decade linking supply chain activities and environmental issues such as green purchasing, reverse logistics, product stewardship, and design for the environment have been a topic of interest among many manufacturing organizations [3]. In order to decrease hazardous environmental effects, firms have been forced to improve their environmental issues like decreasing hazardous impacts of their products, their manufacturing processes, logistics processes, and so forth [4]. Environmental performance of a company can be determined by its own environmental efforts and environmental performance of its suppliers. For manufacturing industries, green manufacturing

References

[1]  A. H. I. Lee, H. Y. Kang, C. F. Hsu, and H. C. Hung, “A green supplier selection model for high-tech industry,” Expert Systems with Applications, vol. 36, pp. 7917–7927, 2009.
[2]  R. J. Kuo, Y. C. Wang, and F. C. Tien, “Integration of artificial neural network and MADA methods for green supplier selection,” Journal of Cleaner Production, vol. 18, no. 12, pp. 1161–1170, 2010.
[3]  S. Vachon and R. D. Klassen, “Green project partnership in the supply chain: the case of the package printing industry,” Journal of Cleaner Production, vol. 14, no. 6-7, pp. 661–671, 2006.
[4]  G. Noci, “Designing “green” vendor rating systems for the assessment of a supplier's environmental performance,” European Journal of Purchasing and Supply Management, vol. 3, no. 2, pp. 103–114, 1997.
[5]  G. Büyük?zkan and G. ?ift?i, “A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers,” Expert Systems with Applications, vol. 39, no. 3, pp. 3000–3011, 2012.
[6]  D. G. Li, Z. Y. Zhou, and C. Yang, “A model on supplier selection in Green Supply chain based on HP Neural network,” Applied Mechanics and Materials, vol. 143-144, pp. 312–327, 2012.
[7]  R. Handfield, S. V. Walton, R. Sroufe, and S. A. Melnyk, “Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process,” European Journal of Operational Research, vol. 141, no. 1, pp. 70–87, 2002.
[8]  L. Y. Y. Lu, C. H. Wu, and T. C. Kuo, “Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis,” International Journal of Production Research, vol. 45, no. 18-19, pp. 4317–4331, 2007.
[9]  P. Rao and D. Holt, “Do green supply chains lead to competitiveness and economic performance?” International Journal of Operations and Production Management, vol. 25, no. 9, pp. 898–916, 2005.
[10]  G. Tuzkaya, A. Ozgen, D. Ozgen, and U. R. Tuzkaya, “Environmental performance evaluation of suppliers: a hybrid fuzzy multi-criteria decision approach,” International Journal of Environmental Science and Technology, vol. 6, no. 3, pp. 477–490, 2009.
[11]  W. H. Tsai and S. J. Hung, “A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure,” International Journal of Production Research, vol. 47, no. 18, pp. 4991–5017, 2009.
[12]  C. Bai and J. Sarkis, “Green supplier development: analytical evaluation using rough set theory,” Journal of Cleaner Production, vol. 18, no. 12, pp. 1200–1210, 2010.
[13]  A. Awasthi, S. S. Chauhan, and S. K. Goyal, “A fuzzy multicriteria approach for evaluating environmental performance of suppliers,” International Journal of Production Economics, vol. 126, no. 2, pp. 370–378, 2010.
[14]  X. Fu, Q. Zhu, and J. Sarkis, “Evaluating green supplier development programs at a telecommunications systems provider,” International Journal of Production Economics, vol. 140, no. 1, pp. 357–367, 2012.
[15]  V. Baskaran, S. Nachiappan, and S. Rahman, “Indian textile suppliers' sustainability evaluation using the grey approach,” International Journal of Production Economics, vol. 135, no. 2, pp. 647–658, 2012.
[16]  K. Shaw, R. Shankar, S. S. Yadav, and L. S. Thakur, “Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain,” Expert Systems with Applications, vol. 39, pp. 8182–8192, 2012.
[17]  T. L. Saaty, Decision Making with Dependence and Feedback: The Analytic Network Process, RWS Publications, Pittsburgh, Pa, USA, 2nd edition, 2001.
[18]  K. Green, B. Morton, and S. New, “Purchasing and environmental management: interaction. policies and opportunities,” Business Strategy and the Environment, vol. 5, pp. 188–197, 1996.
[19]  S. K. Srivastava, “Green supply-chain management: a state-of-the-art literature review,” International Journal of Management Reviews, vol. 9, no. 1, pp. 53–80, 2007.
[20]  E. U. Olugu, K. Y. Wong, and A. M. Shaharoun, “Development of key performance measures for the automobile green supply chain,” Resources, Conservation and Recycling, vol. 55, no. 6, pp. 567–579, 2011.
[21]  A. A. Hervani, M. M. Helms, and J. Sarkis, “Performance measurement for green supply chain management,” Benchmarking, vol. 12, no. 4, pp. 330–353, 2005.
[22]  B. Rettab and A. Ben Brik, Green Supply Chain in Dubai, Dubai Chamber Centre for Responsible Business Dubai, Dubai, UAE, 2008.
[23]  R. Narasimhan and J. R. Carter, Environmental Supply Chain Management, The Center for Advanced Purchasing Studies, Arizona State University, Tempe, Ariz, USA, 1998.
[24]  J. D. Linton, R. Klassen, and V. Jayaraman, “Sustainable supply chains: an introduction,” Journal of Operations Management, vol. 25, no. 1, pp. 1075–1082, 2007.
[25]  R. Handfield, R. Sroufe, and S. Walton, “Integrating environmental management and supply chain strategies,” Business Strategy and the Environment, vol. 14, no. 1, pp. 1–19, 2005.
[26]  J. Hall, “Environmental supply chain dynamics,” Journal of Cleaner Production, vol. 8, no. 6, pp. 455–471, 2000.
[27]  Q. Zhu, J. Sarkis, and K.-H. Lai, “Confirmation of a measurement model for green supply chain management practices implementation,” International Journal of Production Economics, vol. 111, no. 2, pp. 261–273, 2008.
[28]  T. Wu, D. Shunk, J. Blackhurst, and R. Appalla, “AIDEA: a methodology for supplier evaluation and selection in a supplier-based manufacturing environment,” International Journal of Manufacturing Technology and Management, vol. 11, no. 2, pp. 174–192, 2007.
[29]  S. R. Gordon, “Supplier evaluation: benefits, barriers and best practices,” in Proceedings of the 91st Annual International Supply Management Conference, May 2006.
[30]  P. K. Humpreys, Y. K. Wong, and F. T. S. Chan, “Integrating environmental criteria into the supplier selection process,” Journal of Materials Processing Technology, vol. 138, pp. 349–356, 2003.
[31]  P. Humphreys, R. McIvor, and F. Chan, “Using case-based reasoning to evaluate supplier environmental management performance,” Expert Systems with Applications, vol. 25, no. 2, pp. 141–153, 2003.
[32]  C. W. Hsu and A. H. Hu, “Applying hazardous substance management to supplier selection using analytic network process,” Journal of Cleaner Production, vol. 17, pp. 255–264, 2009.
[33]  T. L. Saaty, “Decision making—the analytic hierarchy and network processes (AHP/ANP),” Journal of Systems Science and Systems Engineering, vol. 13, no. 1, pp. 1–34, 2004.
[34]  W. H. Tsai and W. C. Chou, “Selecting management systems for sustainable development in SMEs: a novel hybrid model based on DEMATEL, ANP, and ZOGP,” Expert Systems with Applications, vol. 36, no. 2, pp. 1444–1458, 2009.
[35]  C. L. Lin, M. S. Hsieh, and G. H. Tzeng, “Evaluating vehicle telematics system by using a novel MCDM techniques with dependence and feedback,” Expert Systems with Applications, vol. 7, no. 10, pp. 6723–6736, 2010.
[36]  E. Manokaran, S. Subhashini, S. Senthilvel, R. Muruganandham, and K. Ravichandran, “Application of multi criteria decision making tools and validation with optimization technique-case study using TOPSIS, ANN & SAW,” International Journal of Management & Business Studies, vol. 1, no. 3, pp. 112–115, 2011.
[37]  M. T. Chu, J. Shyu, G. H. Tzeng, and R. Khosla, “Comparison among three analytical methods for knowledge communities group-decision analysis,” Expert Systems with Applications, vol. 33, no. 4, pp. 1011–1024, 2007.
[38]  G. R. Jahanshahloo, F. H. Lotfi, and M. Izadikhah, “An algorithmic method to extend TOPSIS for decision-making problems with interval data,” Applied Mathematics and Computation, vol. 175, no. 2, pp. 1375–1384, 2006.
[39]  E. ?z and F. ?. Bayko?, “Tedarik?i se?imi problemine karar teorisi destekli uzman sistem yaklas?m?,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 19, no. 3, pp. 275–286, 2004.
[40]  A. G. Abdul-Mumin, “Instrumental and interpersonal determinants of relationship satisfaction and commitment in industrial markets,” Journal of Business Research, vol. 58, pp. 619–628, 2005.
[41]  L. Shenc, L. Olfat, K. Govindan, R. Khodaverdia, and A. Diabat, “A fuzzy multi criteria approach for evaluating green supplier’s performance in green supply chain with linguistic preferences,” Resources, Conservation and Recycling, 2012.
[42]  G. Azzone and G. Noci, “Measuring the environmental performance of new products: an integrated approach,” International Journal of Production Research, vol. 3, no. 11, pp. 3055–3078, 1996.
[43]  Q. Zhu and J. Sarkis, “Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises,” Journal of Operations Management, vol. 22, no. 3, pp. 265–289, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133