全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fuzzy Quality Function Deployment: An Analytical Literature Review

DOI: 10.1155/2013/682532

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an analytical literature review on fuzzy quality function deployment (FQFD) of papers published between 2000 and 2011. In this review, publications were divided into two main groups. First group included publications which proposed some models to develop FQFD. The second one was related to new applications of FQFD models. Next, publications were analyzed and research gaps and future directions were presented. We reached some conclusions including the following. (i) Most of studies were focused on quantitative methods to accomplish phase 1 of QFD or House of Quality (HoQ). The most employed techniques were multicriteria decision making (MCDM) methods. (ii) Although main purpose of using QFD was product development, other factors such as risk and competiveness analysis should be considered in product development process. (iii) A promising approach is using of metaheuristic methods for solving complicated problems of FQFD. (iv) There are a few studies on completing all phases of FQFD. 1. Introduction Quality function deployment (QFD) is a customer-driven product development tool to achieve higher customer satisfaction through translating customer needs (CNs) into design requirements (DRs), part characteristics (PCs), and production plans and control [1]. Chan and Wu [2] defined QFD as “a system to assure that customer needs drive product design and production process.” QFD is used essentially in order to design product according to customer favorites. A general QFD process consists of 4 phases. First phase, which is called House of Quality (HoQ), is an important stage in deploying QFD process. In this stage, after determining CNs and technical characteristics (TCs), relationships between CNs (Whats) and TCs (Hows) as well as their interdependencies are established and their importance weight is calculated [1]. In second phase TCs are translated to important PCs. Critical parameters of process are established in third stage and finally production requirements are specified (fourth phase) [3]. Most of required data in QFD processes and activities are expressed in natural language. Customers, for example, say their expectations from product by using expressions such as “easy to use,” “safe,” and “comfortable” which all of them have ambiguity. Computing these ambiguities in a requirement is an important issue [4]. Using tools from fuzzy sets and their concepts, we can approximate linguistic data to a numeric precision [5]. This review, consisting of a bank with more than 70 papers, divided publications in two main groups. First was

References

[1]  L. H. Chen and W. C. Ko, “Fuzzy approaches to quality function deployment for new product design,” Fuzzy Sets and Systems, vol. 160, no. 18, pp. 2620–2639, 2009.
[2]  L. K. Chan and M. L. Wu, “A systematic approach to quality function deployment with a full illustrative example,” Omega, vol. 33, no. 2, pp. 119–139, 2005.
[3]  L. H. Chen and W. C. Ko, “Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept,” European Journal of Operational Research, vol. 201, no. 2, pp. 619–632, 2010.
[4]  X. F. Liu and J. Yen, “Analytic framework for specifying and analyzing imprecise requirements,” in Proceedings of the 18th International Conference on Software Engineering, pp. 60–69, IEEE Computer Society Press, Los Alamitos, Calif, USA, March 1996.
[5]  C. Kahraman, T. Ertay, and G. Büyük?zkan, “A fuzzy optimization model for QFD planning process using analytic network approach,” European Journal of Operational Research, vol. 171, no. 2, pp. 390–411, 2006.
[6]  L. H. Chen and W. C. Ko, “A fuzzy nonlinear model for quality function deployment considering Kano's concept,” Mathematical and Computer Modelling, vol. 48, no. 3-4, pp. 581–593, 2008.
[7]  X. G. Luo, J. F. Tang, and D. W. Wang, “An optimization method for components selection using quality function deployment,” International Journal of Advanced Manufacturing Technology, vol. 39, no. 1-2, pp. 158–167, 2008.
[8]  Z. Sener and E. E. Karsak, “A decision model for setting target levels in quality function deployment using nonlinear programming-based fuzzy regression and optimization,” International Journal of Advanced Manufacturing Technology, vol. 48, no. 9–12, pp. 1173–1184, 2010.
[9]  K. J. Kim, H. Moskowitz, A. Dhingra, and G. Evans, “Fuzzy multicriteria models for quality function deployment,” European Journal of Operational Research, vol. 121, no. 3, pp. 504–518, 2000.
[10]  C. K. Kwong and H. Bai, “A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment,” Journal of Intelligent Manufacturing, vol. 13, no. 5, pp. 367–377, 2002.
[11]  I. Erol and W. G. Ferrell, “A methodology for selection problems with multiple, conflicting objectives and both qualitative and quantitative criteria,” International Journal of Production Economics, vol. 86, no. 3, pp. 187–199, 2003.
[12]  G. Büyük?zkan, T. Ertay, C. Kahraman, and D. Ruan, “Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach,” International Journal of Intelligent Systems, vol. 19, no. 5, pp. 443–461, 2004.
[13]  L. H. Chen and M. C. Weng, “An evaluation approach to engineering design in QFD processes using fuzzy goal programming models,” European Journal of Operational Research, vol. 172, no. 1, pp. 230–248, 2006.
[14]  N. Gunasekaran, S. Rathesh, S. Arunachalam, and S. C. L. Koh, “Optimizing supply chain management using fuzzy approach,” Journal of Manufacturing Technology Management, vol. 17, no. 6, pp. 737–749, 2006.
[15]  S. M. Mousavi, H. Malekly, H. Hashemi, and S. M. H. Mojtahedi, “A two-phase fuzzy decision making methodology for Bridge Scheme Selection,” in Proceedings of theIEEE International Conference on Industrial Engineering and Engineering Management (IEEM '08), pp. 415–419, December 2008.
[16]  C. Y. Lin and A. H. I. Lee, “Preliminary study of a fuzzy integrated model for new product development of TFT-LCD,” in Proceedings of the IEEE International Conference on Service Operations and Logistics, and Informatics (IEEE/SOLI '08), pp. 2689–2695, October 2008.
[17]  M. Celik, S. Cebi, C. Kahraman, and I. D. Er, “An integrated fuzzy QFD model proposal on routing of shipping investment decisions in crude oil tanker market,” Expert Systems with Applications, vol. 36, no. 3, pp. 6227–6235, 2009.
[18]  H. Khademi-Zare, M. Zarei, A. Sadeghieh, and M. Saleh Owlia, “Ranking the strategic actions of Iran mobile cellular telecommunication using two models of fuzzy QFD,” Telecommunications Policy, vol. 34, no. 11, pp. 747–759, 2010.
[19]  L. Z. Lin, W. C. Chen, and T. J. Chang, “Using FQFD to analyze island accommodation management in fuzzy linguistic preferences,” Expert Systems with Applications, vol. 38, no. 6, pp. 7738–7745, 2011.
[20]  C. H. Wang, “An integrated fuzzy multi-criteria decision making approach for realizing the practice of quality function deployment,” in Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM '10), pp. 13–17, December 2010.
[21]  B. Nepal, O. Yadav, and A. Murat, “A fuzzy-AHP approach to prioritization of CS attributes in target planning for automotive product development,” Expert Systems with Applications, vol. 37, pp. 6775–6786, 2010.
[22]  L. Zheng, T. Pan, and G. Yan, “The process integration evaluation method of the fourth party logistics using fuzzy theory,” in Proceedings of the 4th International Conference on Management of e-Commerce and e-Government (ICMeCG '10), pp. 313–316, October 2010.
[23]  Z. Gungor, E. K. Delice, and S. E. Kesen, “New product design using FDMS and FANP under fuzzy environment,” Applied Soft Computing, vol. 11, no. 4, pp. 3347–3356, 2011.
[24]  A. H. I. Lee and C. Y. Lin, “An integrated fuzzy QFD framework for new product development,” Flexible Services and Manufacturing Journal, vol. 23, no. 1, pp. 26–47, 2011.
[25]  H. T. Liu, “Product design and selection using fuzzy QFD and fuzzy MCDM approaches,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 482–496, 2010.
[26]  H. T. Liu and C. H. Wang, “An advanced quality function deployment model using fuzzy analytic network process,” Applied Mathematical Modelling, vol. 34, no. 11, pp. 3333–3351, 2010.
[27]  F. Zandi and M. Tavana, “A fuzzy group quality function deployment model for e-CRM framework assessment in agile manufacturing,” Computers and Industrial Engineering, vol. 61, no. 1, pp. 1–19, 2011.
[28]  M. Zarei, M. B. Fakhrzad, and M. Jamali Paghaleh, “Food supply chain leanness using a developed QFD model,” Journal of Food Engineering, vol. 102, no. 1, pp. 25–33, 2011.
[29]  S. Yousefie, M. Mohammadi, and J. H. Monfared, “Selection effective management tools on setting European Foundation for Quality Management (EFQM) model by a quality function deployment (QFD) approach,” Expert Systems with Applications, vol. 38, no. 8, pp. 9633–9647, 2011.
[30]  E. E. Karsak and C. O. ?zogul, “An integrated decision making approach for ERP system selection,” Expert Systems with Applications, vol. 36, no. 1, pp. 660–667, 2009.
[31]  L. Huang and X. Li, “Research on determining the key technology of new product plan and design,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '08), pp. 1532–1537, Bangkok, Thailand, February 2009.
[32]  Y. M. Wang and K. S. Chin, “A linear goal programming priority method for fuzzy analytic hierarchy process and its applications in new product screening,” International Journal of Approximate Reasoning, vol. 49, no. 2, pp. 451–465, 2008.
[33]  E. Tolga and S. E. Alptekin, “Product evaluation and development process using a fuzzy compromise-based goal programming approach,” Journal of Intelligent and Fuzzy Systems, vol. 19, no. 4-5, pp. 285–301, 2008.
[34]  E. E. Karsak, S. Sozer, and S. E. Alptekin, “Product planning in quality function deployment using a combined analytic network process and goal programming approach,” Computers and Industrial Engineering, vol. 44, no. 1, pp. 171–190, 2003.
[35]  R. G. Ozdemir and Z. Ayag, “Fuzzy ANP-based modified TOPSIS for machine tool selection problem,” in Proceedings of the 16th International Working Seminar on Production Economics (IWSPE '10), Innsbruck, Austria, March 2010.
[36]  Z. Zhang and X. Chu, “Fuzzy group decision-making for multi-format and multi-granularity linguistic judgments in quality function deployment,” Expert Systems with Applications, vol. 36, no. 5, pp. 9150–9158, 2009.
[37]  G. Büyük?zkana, O. Feyzio?lu, and D. Ruanb, “Fuzzy group decision-making to multiple preference formats in quality function deployment,” Computers in Industry, vol. 58, no. 5, pp. 392–402, 2007.
[38]  H. T. Liu, “The extension of fuzzy QFD: from product planning to part deployment,” Expert Systems with Applications, vol. 36, no. 8, pp. 11131–11144, 2009.
[39]  A. Sanayei, S. Farid Mousavi, and A. Yazdankhah, “Group decision making process for supplier selection with VIKOR under fuzzy environment,” Expert Systems with Applications, vol. 37, no. 1, pp. 24–30, 2010.
[40]  L. Z. Lin, L. C. Huang, and H. R. Yeh, “Fuzzy group decision-making for service innovations in quality function deployment,” Group Decision and Negotiation, vol. 21, no. 4, pp. 495–517, 2011.
[41]  X.-T. Wanga and W. Xionga, “An integrated linguistic-based group decision-making approach for quality function deployment,” Expert Systems with Applications, vol. 38, no. 12, pp. 14428–14438, 2011.
[42]  S. W. Hsiao and E. Liu, “A neurofuzzy-evolutionary approach for product design,” Integrated Computer-Aided Engineering, vol. 11, no. 4, pp. 323–338, 2004.
[43]  F. Lai, D. Li, Q. Wang, and X. Zhao, “The information technology capability of third-party logistics providers: a resource-based view and empirical evidence from China,” Journal of Supply Chain Management, vol. 44, no. 3, pp. 22–38, 2008.
[44]  E. Mehdizadeh, “Ranking of customer requirements using the fuzzy centroid-based method,” International Journal of Quality and Reliability Management, vol. 27, no. 2, pp. 201–216, 2010.
[45]  M. Guo, J. B. Yang, K. S. Chin, H. W. Wang, and X. B. Liu, “Evidential reasoning approach for multiattribute decision analysis under both fuzzy and Interval uncertainty,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 3, pp. 683–697, 2009.
[46]  T. Mu, A. K. Nandi, and R. M. Rangayyan, “Classification of breast masses via nonlinear transformation of features based on a kernel matrix,” Medical and Biological Engineering and Computing, vol. 45, no. 8, pp. 769–780, 2007.
[47]  M. Bevilacqua, F. E. Ciarapica, and G. Giacchetta, “A fuzzy-QFD approach to supplier selection,” Journal of Purchasing and Supply Management, vol. 12, no. 1, pp. 14–27, 2006.
[48]  Z. Zhang and X. Chu, “A selection model for multiple design schemes of complex product,” in Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '07), pp. 483–487, August 2007.
[49]  F. Wang, X. H. Li, W. N. Rui, and Y. Zhang, “A fuzzy QFD-based method for customizing positioning of logistics Service products of 3PLS,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '07), pp. 3331–3334, September 2007.
[50]  H. Rau and Y. T. Fang, “Conflict resolution of product package design for logistics using the triz method,” in Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2891–2896, July 2009.
[51]  E. Bottani and A. Rizzi, “Strategic management of logistics service: a fuzzy QFD approach,” International Journal of Production Economics, vol. 103, no. 2, pp. 585–599, 2006.
[52]  S. H. Amin and J. Razmi, “An integrated fuzzy model for supplier management: a case study of ISP selection and evaluation,” Expert Systems with Applications, vol. 36, no. 4, pp. 8639–8648, 2009.
[53]  S. Y. Sohn and I. S. Choi, “Fuzzy QFD for supply chain management with reliability consideration,” Reliability Engineering and System Safety, vol. 72, no. 3, pp. 327–334, 2001.
[54]  I. H. Kuo, S. J. Horng, T. W. Kao, T. L. Lin, C. L. Lee, and Y. Pan, “An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization,” Expert Systems with Applications, vol. 36, no. 3, pp. 6108–6117, 2009.
[55]  T. C. Kuo, H. H. Wu, and J. I. Shieh, “Integration of environmental considerations in quality function deployment by using fuzzy logic,” Expert Systems with Applications, vol. 36, no. 3, pp. 7148–7156, 2009.
[56]  G. Z. Jia and M. Bai, “An approach for manufacturing strategy development based on fuzzy-QFD,” Computers and Industrial Engineering, vol. 60, no. 3, pp. 445–454, 2011.
[57]  C. G. ?en and H. Bara?l?, “Fuzzy quality function deployment based methodology for acquiring enterprise software selection requirements,” Expert Systems with Applications, vol. 37, no. 4, pp. 3415–3426, 2010.
[58]  Y. Yan, H. Liu, Y. Zhang, and Z. Zhou, “A Fuzzy-QFD approach to design decision support system for emergency response of hazardous materials road transportation accidents,” in Proceedings of the IEEE International Conference on Automation and Logistics (ICAL '10), pp. 506–510, August 2010.
[59]  G. Wang, P. Shi, and C. Wen, “Fuzzy approximation relations on fuzzy n-cell number space and their applications in classification,” Information Sciences, vol. 181, no. 18, pp. 3846–3860, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133