全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Various Ring Yarns on Fabric Comfort

DOI: 10.1155/2013/206240

Full-Text   Cite this paper   Add to My Lib

Abstract:

Comfort performance of woven structures made of various types of ring spun yarns like carded, combed, and compact spun yarns has been reported in the present study. Carded, combed, and compact spun yarns are entirely different in structure in terms of fibre migration inside the yarn body, level of free space inside the yarn, number of hairs, and length of hairs on yarn surfaces. In this study, 197?dtex and 144?dtex (30s?Ne and 40s?Ne) ring spun combed yarns are used as a warp. The same cotton mixing was used to manufacture 30s?Ne and 40s?Ne carded, combed, and compact yarns. Both 30s and 40s?Ne linear density yarns were prepared by all three carded, combed, and compact yarn manufacturing routes. The structure of fibre strand in filling yarn has a great impact on comfort related properties, that is, thermal conductivity, , air permeability, wicking, and moisture vapour permeability. 1. Introduction Can yarn engineering influence the comfort management of woven fabric? Yes, because yarn engineering changes the configuration of constituent fibres in yarn body. Comfort is qualitative attribute, and it is one of the most demanding aspects from clothing customers of present era. Comfort is a collective feeling generated by summation of impulses sent to the nerves from different receptors in the human brain [1]. Psychological, tactile, and thermal comforts are three classes of comfort. Transmission ability of fabric is related to the thermal comfort because it maintains the temperature and moisture level at skin through transmission of heat and sweat generated by human body. Majority of scientists agreed on the point that transmission of air, heat, and water is probably the most important factors in clothing comfort [2, 3]. The comfort performance of clothing depends on the structure and properties of fibre and yarn used. Alteration in yarn structure is able to make some revolutionary changes in fabric quality from comfort point of view. More than 70 percent of yarns are still ring spun yarns used for clothing purposes. Carded, combed, and compact are three different routes to manufacture ring spun yarns. As the yarn structure changes in carded, combed, and compact spun yarns, various types of external and internal changes take place in resultant yarns. Fibre configurations remain different in carded, combed, and compact yarns. Hence, a systematic research is required in this field to understand the role of ring yarn structure on fabric comfort. In order to investigate the effect of ring yarn type on fabric comfort, a focused research is required. The sole

References

[1]  R. L. Barker, “From fabric hand to thermal comfort: the evolving role of objective measurements in explaining human comfort response to textiles,” International Journal of Clothing Science and Technology, vol. 14, no. 3-4, pp. 181–200, 2002.
[2]  C. V. Le, N. G. Ly, and R. Postle, “Heat and moisture transfer in textile assemblies. I. Steaming of wool, cotton, nylon and polyester fabric beds,” Textile Research Journal, vol. 65, no. 4, pp. 203–212, 1995.
[3]  J. Fan and X. Cheng, “Heat and moisture transfer with sorption and phase change through clothing assemblies: part I: experimental investigation,” Textile Research Journal, vol. 75, no. 2, pp. 99–105, 2005.
[4]  O. Nida and M. Arzu, “Thermal comfort of some knitted structures,” Fibres & Textiles in Eastern Europe, vol. 15, no. 5, p. 94, 2007.
[5]  P. R. Harnett and P. N. Mehta, “A survey and comparison of laboratory test methods for measuring wicking,” Textile Research Journal, vol. 54, no. 7, pp. 471–478, 1984.
[6]  Y.-L. Hsieh, A. Miller And, and J. Thompson, “Wetting, pore structure, and liquid retention of hydrolyzed polyester fabrics,” Textile Research Journal, vol. 66, no. 1, pp. 1–10, 1996.
[7]  T. Liu, K. Choi, and Y. Li, “Wicking in twisted yarns,” Journal of Colloid and Interface Science, vol. 318, no. 1, pp. 134–139, 2008.
[8]  I. Hes, Instruction Manual of the ALAMBETA Instrument, SENSORA, Liberec Registered Company, 1990.
[9]  L. Hes, V. Hybil, and B. Bandyopadhyay, “Determination of warm/cool feeling of various fibrous polymers through thermal absorbtivity,” Indian Journal of Fibre & Textile Research, no. 16, p. 3, 1991.
[10]  L. Hes, “Thermal properties of nonwovens,” in Congress Index, vol. 87, Geneva, Switzerland, 1987.
[11]  L. Hes, “New achievements in the area of the objective evaluation of thermal insulation and thermal-contact properties of textiles,” in Proceedings of the 3rd Asian Textile Conference, vol. 2, pp. 1201–1203, 1995.
[12]  I. Frydrych, G. Dziworska, and J. Bilska, “Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres,” Fibres and Textiles in Eastern Europe, vol. 10, no. 4, pp. 40–44, 2002.
[13]  N. ?zdil, A. Marmarali, and S. D. Kretzschmar, “Effect of yarn properties on thermal comfort of knitted fabrics,” International Journal of Thermal Sciences, vol. 46, no. 12, pp. 1318–1322, 2007.
[14]  S. Kawabata, M. Niwa, and Y. Yamashita, “A guide line for manufacturing 'ideal fabrics',” International Journal of Clothing Science and Technology, vol. 11, no. 2-3, pp. 134–140, 1999.
[15]  W. E. Morton and J. W. S. Hearle, “Forces in various directions,” in Physical Properties of Textile Fibres, Chapter 17, pp. 399–402, The Textile Institute Publication, 3rd edition, 1993.
[16]  B. Das, A. Das, V. K. Kothari, R. Fanguiero, and M. De Araújo, “Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics,” Fibers and Polymers, vol. 9, no. 2, pp. 225–231, 2008.
[17]  T. Ramchandran and N. Kesavaraja, “A Study on Influencing Factors for Wetting and Wicking Behaviour,” Journal of The Institution of Engineers (India), vol. 84, no. 2, p. 39, 2004.
[18]  J. Wiener and P. Dejlová, “Wicking and wetting in textiles,” Autex Research Journal, vol. 3, no. 2, pp. 64–71, 2003.
[19]  T. Liu, K. Choi, and Y. Li, “Wicking in twisted yarns,” Journal of Colloid and Interface Science, vol. 318, no. 1, pp. 134–139, 2008.
[20]  V. K. Kothari and Das Subhasis, “Moisture vapour transmission behaviour of cotton fabrics,” Indian Journal of Fibre & Textile Research, vol. 37, pp. 151–156, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133