全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Profiling of Acute and Chronic Rejections of Renal Allografts

DOI: 10.1155/2013/509259

Full-Text   Cite this paper   Add to My Lib

Abstract:

Both antibody mediated (AMR) and T-cell mediated (TCMR) rejections either acute or chronic represent the main reason for late graft dysfunction. In this study we aimed to evaluate differences in the intrarenal expression patterns of immune system related genes in acute and chronic rejections. Graft biopsies were performed and evaluated according to Banff classification. Using the TaqMan Low Density Array, the intrarenal expressions of 376 genes relating to immune response (B-cell activation, T-cell activation, chemokines, growth factors, immune regulators, and apoptosis) were analyzed in the four rejection categories: chronic AMR, chronic TCMR, acute AMR, and acute TCMR. The set of genes significantly upregulated in acute TCMR as compared to acute AMR was identified, while no difference in gene expressions between chronic rejections groups was found. In comparison with functioning grafts, grafts that failed within the next 24 months after the chronic rejection morphological confirmation presented at biopsy already established severe graft injury (low eGFR, higher proteinuria), longer followup, higher expression of CDC20, CXCL6, DIABLO, GABRP, KIAA0101, ME2, MMP7, NFATC4, and TGFB3 mRNA, and lower expression of CCL19 and TRADD mRNA. In conclusion, both Banff 2007 chronic rejection categories did not differ in intrarenal expression of 376 selected genes associated with immune response. 1. Introduction Both acute and chronic rejections have been shown to affect the long-term outcome of kidney transplantation. Chronic rejection is thought to be associated with both cellular and humoral alloimmune responses [1]. Chronic active antibody mediated rejection (CAMR) is characterized by C4d deposition in peritubular capillaries, the presence of circulating anti-donor antibodies, and morphologic evidence of chronic tissue injury such as glomerular double contours and peritubular capillary basement membrane multilayering and interstitial fibrosis/tubular atrophy (IF/TA) and fibrous arterial intimal thickening. The diagnosis of this entity is problematic since C4d deposits are not permanent and antibody mediated rejection was described to be associated also with different pathways where C4d is not involved [2]. Similarly, the chronic T-cell mediated rejection, albeit well described at Banff scheme, is of unclear pathogenesis. Moreover, the therapy of both processes remains to be insufficient. Beside conventional morphological evaluation, molecular histology offers better insight into rejection pathogenesis and prognosis. Moreover, molecular phenotype may better

References

[1]  K. Solez, R. B. Colvin, L. C. Racusen et al., “Banff 07 classification of renal allograft pathology: updates and future directions,” The American Journal of Transplantation, vol. 8, no. 4, pp. 753–760, 2008.
[2]  B. Sis, G. S. Jhangri, S. Bunnag, K. Allanach, B. Kaplan, and P. F. Halloran, “Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining,” The American Journal of Transplantation, vol. 9, no. 10, pp. 2312–2323, 2009.
[3]  M. Sarwal, M. S. Chua, N. Kambham et al., “Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling,” The New England Journal of Medicine, vol. 349, no. 2, pp. 125–138, 2003.
[4]  O. Viklicky, P. Hribova, H. D. Volk et al., “Molecular phenotypes of acute rejection predict kidney graft prognosis,” Journal of the American Society of Nephrology, vol. 21, no. 1, pp. 173–180, 2010.
[5]  T. F. Mueller, G. Einecke, J. Reeve et al., “Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets,” The American Journal of Transplantation, vol. 7, no. 12, pp. 2712–2722, 2007.
[6]  J. Reeve, G. Einecke, M. Mengel et al., “Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches,” The American Journal of Transplantation, vol. 9, no. 8, pp. 1802–1810, 2009.
[7]  L. C. Racusen, K. Solez, R. B. Colvin et al., “The Banff 97 working classification of renal allograft pathology,” Kidney International, vol. 55, no. 2, pp. 713–723, 1999.
[8]  K. Solez, R. B. Colvin, L. C. Racusen et al., “Banff '05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (“CAN”),” The American Journal of Transplantation, vol. 7, no. 3, pp. 518–526, 2007.
[9]  S. Homs, H. Mansour, D. Desvaux et al., “Predominant Th1 and cytotoxic phenotype in biopsies from renal transplant recipients with transplant glomerulopathy,” The American Journal of Transplantation, vol. 9, no. 5, pp. 1230–1236, 2009.
[10]  G. Einecke, J. Reeve, B. Sis et al., “A molecular classifier for predicting future graft loss in late kidney transplant biopsies,” Journal of Clinical Investigation, vol. 120, no. 6, pp. 1862–1872, 2010.
[11]  A. Havasi and S. C. Borkan, “Apoptosis and acute kidney injury,” Kidney International, vol. 80, no. 1, pp. 29–40, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133