After trauma brain injury, oxidative substances released to the medium provoke an enlargement of the initial lesion, increasing glial cell activation and, occasionally, an influx of immune cells into the central nervous system, developing the secondary damage. In response to these stimuli, microglia are activated to perform upregulation of intracellular enzymes and cell surface markers to propagate the immune response and phagocytosis of cellular debris. The phagocytosis of debris and dead cells is essential to limit the inflammatory reaction and potentially prevent extension of the damage to noninjured regions. Lipoic acid has been reported as a neuroprotectant by acting as an antioxidant and anti-inflammatory agent. Furthermore, angiogenic effect promoted by lipoic acid has been recently shown by our group as a crucial process for neural regeneration after brain injury. In this work, we focus our attention on the lipoic acid effect on astroglial and microglial response after brain injury. 1. Introduction Traumatic brain injury (TBI) is a complex process involving a broad spectrum of symptoms and long-term consequences including disabilities [1]. As a consequence of the primary insult, many molecules from injured and dead cells induce microglial and astroglial activation [2] and disruption of the blood-brain barrier (BBB) [3]. In addition to the direct loss of tissue caused by the trauma, secondary mechanisms leading to additional tissue injury are important for outcome and therefore constitute important therapeutic targets [4]. Recently, interest has been focused on oxidative stress as a mechanism involved in the development of secondary brain damage [5]. After brain injury, a local increase in glial cell activation occurs and, occasionally, an influx of immune cells goes into the central nervous system (CNS). Accumulation of blood born immune cells at the side of the lesion is paralleled by activation of CNS-resident astrocytes and microglia, where they latter transform into phagocytic macrophages [6]. The use of lipoic acid (LA) on stroke and TBI animal models seems to be effective, restoring the BBB disruption and normalizing the astrocytic/microglial activation and glutathione (GSH) levels [7–9]. LA is well known as a natural cofactor for mitochondrial enzymes and is critical in breaking down fatty acids, which further enhance cellular energy efficiency. Recent findings obtained by our group show that LA works as a good neuroprotectant by acting as an antioxidant, increasing the antioxidant capacity of the tissue, decreasing the astroglial
References
[1]
M. Das, S. Mohapatra, and S. S. Mohapatra, “New perspectives on central and peripheral immune responses to acute traumatic brain injury,” Journal of Neuroinflammation, vol. 9, article 236, 2012.
[2]
D. J. Loane and K. R. Byrnes, “Role of microglia in neurotrauma,” Neurotherapeutics, vol. 7, no. 4, pp. 366–377, 2010.
[3]
D. Shlosberg, M. Benifla, D. Kaufer, and A. Friedman, “Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury,” Nature Reviews Neurology, vol. 6, no. 7, pp. 393–403, 2010.
[4]
A. Minagar, P. Shapshak, R. Fujimura, R. Ownby, M. Heyes, and C. Eisdorfer, “The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis,” Journal of the Neurological Sciences, vol. 202, no. 1-2, pp. 13–23, 2002.
[5]
B.-M. Bellander, O. Lidman, M. Ohlsson, B. Meijer, F. Piehl, and M. Svensson, “Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury,” Experimental Brain Research, vol. 205, no. 1, pp. 103–114, 2010.
[6]
M. Koshinaga, Y. Katayama, M. Fukushima, H. Oshima, T. Suma, and T. Takahata, “Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices,” Journal of Neurotrauma, vol. 17, no. 3, pp. 183–192, 2000.
[7]
H. Z. Toklu, T. Hakan, N. Biber, S. Solako?lu, A. V. ??ün?, and G. ?ener, “The protective effect of alpha lipoic acid against traumatic brain injury in rats,” Free Radical Research, vol. 43, no. 7, pp. 658–667, 2009.
[8]
O. Gonzalez-Perez, R. E. Gonzalez-Castaeda, M. Huerta et al., “Beneficial effects of α-lipoic acid plus vitamin E on neurological deficit, reactive gliosis and neuronal remodeling in the penumbra of the ischemic rat brain,” Neuroscience Letters, vol. 321, no. 1-2, pp. 100–104, 2002.
[9]
G. Schreibelt, R. J. P. Musters, A. Reijerkerk et al., “Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity,” Journal of Immunology, vol. 177, no. 4, pp. 2630–2637, 2006.
[10]
B. Rocamonde, S. Paradells, J. M. Barcia et al., “Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury,” Neuroscience, vol. 224, pp. 102–115, 2012.
[11]
J. Zhang, Q. S. Xiang, S. Echeverry, J. S. Mogil, Y. de Koninck, and S. Rivest, “Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain,” The Journal of Neuroscience, vol. 27, no. 45, pp. 12396–12406, 2007.
[12]
M. B. Graeber and W. J. Streit, “Microglia: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 89–105, 2010.
[13]
L.-J. Chew, A. Takanohashi, and M. Bell, “Microglia and inflammation: impact on developmental brain injuries,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 12, no. 2, pp. 105–112, 2006.
[14]
G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, Calif, USA, 1986.
[15]
A. Quintana, M. Giralt, A. Molinero, I. L. Campbell, M. Penkowa, and J. Hidalgo, “Analysis of the cerebral transcriptome in mice subjected to traumatic brain injury: importance of IL-6,” NeuroImmunoModulation, vol. 14, no. 3-4, pp. 139–143, 2007.
[16]
C. L??v, L. Hillered, T. Ebendal, and A. Erlandsson, “Engulfing astrocytes protect neurons from contact-induced apoptosis following injury,” PLoS ONE, vol. 7, no. 3, Article ID e33090, 2012.
[17]
A. Buffo, C. Rolando, and S. Ceruti, “Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential,” Biochemical Pharmacology, vol. 79, no. 2, pp. 77–89, 2010.
[18]
D. G. Hernandez-Ontiveros, N. Tajiri, S. Acosta, B. Giunta, J. Tan, and C. V. Borlongan, “Microglia activation as a biomarker for traumatic brain injury,” Frontiers in Neurology, vol. 4, article 30, 2013.
[19]
U.-K. Hanisch and H. Kettenmann, “Microglia: Active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007.
[20]
D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005.
[21]
D. van Rossum and U.-K. Hanisch, “Microglia,” Metabolic Brain Disease, vol. 19, no. 3-4, pp. 393–411, 2004.
[22]
J. Neumann, M. Gunzer, H. O. Gutzeit, O. Ullrich, K. G. Reymann, and K. Dinkel, “Microglia provide neuroprotection after ischemia,” FASEB Journal, vol. 20, no. 6, pp. 714–716, 2006.
[23]
F. Imai, H. Suzuki, J. Oda et al., “Neuroprotective effect of exogenous microglia in global brain ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 3, pp. 488–500, 2007.
[24]
M. Lalancette-Hebert, G. Growing, A. Simard, Y. C. Weng, and J. Kriz, “Selective ablation of proliferating microgial cells exacerbates ischemic injury in the brain,” The Journal of Neuroscience, vol. 27, no. 10, pp. 2596–2605, 2007.
[25]
B. J. Kim, M.-J. Kim, J.-M. Park et al., “Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat,” Journal of the Neurological Sciences, vol. 279, no. 1-2, pp. 70–75, 2009.
[26]
P. Thored, U. Heldmann, W. Gomes-Leal et al., “Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke,” GLIA, vol. 57, no. 8, pp. 835–849, 2009.
[27]
Q. Wang, X. N. Tang, and M. A. Yenari, “The inflammatory response in stroke,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 53–68, 2007.
[28]
H. Watanabe, H. Abe, S. Takeuchi, and R. Tanaka, “Protective effect of microglial conditioning medium on neuronal damage induced by glutamate,” Neuroscience Letters, vol. 289, no. 1, pp. 53–56, 2000.
[29]
K. Nakajima, S. Yamamoto, S. Kohsaka, and T. Kurihara, “Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro,” Neuroscience Letters, vol. 436, no. 3, pp. 331–334, 2008.
[30]
G. Stollg and S. Jander, “The role of microglia and macrophages in the pathophysiology of the CNS,” Progress in Neurobiology, vol. 58, no. 3, pp. 233–247, 1999.
[31]
J. Neumann, S. Sauerzweig, R. R?nicke et al., “Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege,” The Journal of Neuroscience, vol. 28, no. 23, pp. 5965–5975, 2008.