Introduction. Indirect immunofluorescence (IIF) is the gold standard method for the detection of antinuclear antibodies (ANA) which are essential markers for the diagnosis of systemic autoimmune rheumatic diseases. For the discrimination of positive and negative samples, we propose here an original approach named Immunofluorescence for Computed Antinuclear antibody Rational Evaluation (ICARE) based on the calculation of a fluorescence index (FI). Methods. We made comparison between FI and visual evaluations on 237 consecutive samples and on a cohort of 25 patients with SLE. Results. We obtained very good technical performance of FI (95% sensitivity, 98% specificity, and a kappa of 0.92), even in a subgroup of weakly positive samples. A significant correlation between quantification of FI and IIF ANA titers was found (Spearman's , ). Clinical performance of ICARE was validated on a cohort of patients with SLE corroborating the fact that FI could represent an attractive alternative for the evaluation of antibody titer. Conclusion. Our results represent a major step for automated quantification of IIF ANA, opening attractive perspectives such as rapid sample screening and laboratory standardization. 1. Introduction Antinuclear antibodies (ANA) are essential biological markers for the diagnosis [1], classification, and disease activity monitoring [2] of systemic autoimmune rheumatic diseases. Given this central role, ANA screening should be accurate and reproducible. For several decades, indirect immunofluorescence (IIF) on HEp-2 cells has been the reference technique for ANA testing. Although new available techniques [3, 4] such as ELISA or multiplexing solid phase technologies have been proposed to replace IIF, the American College of Rheumatology (ACR) still recommends IIF as the gold standard method for ANA detection [5]. The main drawback of this technique is IIF reading subjectivity, intra- and interlaboratory variabilities complicating the standardization expected in modern laboratories. Recently, commercial automated systems for ANA IIF reading and interpretation have become available and were described in the literature [6–11]. Most of them are based on data mining and supervised machine learning methods [12]. In addition to their complexity, they share a common weakness in the detection of weak positivity. In this work, we describe an original algorithm named Immunofluorescence for Computed Antinuclear antibody Rational Evaluation (ICARE) for automation of IIF ANA evaluation offering excellent analytical performance and an attractive quantitative
References
[1]
D. H. Solomon, A. J. Kavanaugh, P. H. Schur et al., “Evidence-based guidelines for the use of immunologic tests: antinuclear antibody testing,” Arthritis Care and Research, vol. 47, no. 4, pp. 434–444, 2002.
[2]
M. J. Fritzler, “Challenges to the use of autoantibodies as predictors of disease onset, diagnosis and outcomes,” Autoimmunity Reviews, vol. 7, no. 8, pp. 616–620, 2008.
[3]
K. Op de Beéck, P. Vermeersch, P. Verschueren et al., “Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis,” Autoimmunity Reviews, vol. 12, no. 2, pp. 137–143, 2012.
[4]
S. Desplat-Jego, N. Bardin, B. Larida, and M. Sanmarco, “Evaluation of the BioPlex 2200 ANA screen for the detection of antinuclear antibodies and comparison with conventional methods,” Annals of the New York Academy of Sciences, vol. 1109, pp. 245–255, 2007.
[5]
P. L. Meroni and P. H. Schur, “ANA screening: an old test with new recommendations,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1420–1422, 2010.
[6]
K. Egerer, D. Roggenbuck, R. Hiemann et al., “Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests,” Arthritis Research and Therapy, vol. 12, no. 2, article R40, 2010.
[7]
A. Melegari, C. Bonaguri, A. Russo, B. Luisita, T. Trenti, and G. Lippi, “A comparative study on the reliability of an automated system for the evaluation of cell-based indirect immunofluorescence,” Autoimmunity Reviews, vol. 11, no. 10, pp. 713–716, 2012.
[8]
S. Kivity, B. Gilburd, N. Agmon-Levin et al., “A novel automated indirect immunofluorescence autoantibody evaluation,” Clinical Rheumatology, vol. 31, no. 3, pp. 503–509, 2012.
[9]
J. Voigt, C. Krause, E. Rohw?der et al., “Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells,” Clinical and Developmental Immunology, vol. 2012, Article ID 651058, 7 pages, 2012.
[10]
X. Bossuyt, S. Cooreman, H. de Baere et al., “Detection of antinuclear antibodies by automated indirect immunofluorescence analysis.,” Clinica Chimica Acta, vol. 415, pp. 101–106, 2013.
[11]
C. Bonroy, C. Verfaillie, V. Smith et al., “Automated indirect immunofluorescence antinuclear antibody analysis is a standardized alternative for visual microscope interpretation,” Clinical Chemistry and Laboratory Medicine, vol. 6, pp. 1–9, 2013.
[12]
P. Perner, H. Perner, and B. Müller, “Mining knowledge for HEp-2 cell image classification,” Artificial Intelligence in Medicine, vol. 26, no. 1-2, pp. 161–173, 2002.
[13]
J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[14]
M. Satoh, E. K. Chan, L. A. Ho et al., “Prevalence and sociodemographic correlates of antinuclear antibodies in the United States,” Arthritis & Rheumatism, vol. 64, no. 7, pp. 2319–2327, 2012.