While the role of T helper 17 lymphocytes (Th17) in the pathogenesis of autoimmune diseases and in infectious immunity has been relatively well defined, the impact of these cells and their associated cytokines on cancer development is still under debate. Although multiple reports have indicated that Th17 can promote anticancer immunity, others have argued that these cells may exhibit tumor-promoting properties. This dichotomy in the function of Th17 lymphocytes in cancer may be related to the versatile nature of these cells, being capable of differentiating into either proinflammatory Th1 or suppressive FoxP3-expressing Treg cells or hybrid T cell subsets depending on the underlying environmental conditions. In the current review, we examine the role of Th17 lymphocytes and Th17-associated cytokines in cancer and discuss how factors that control their final lineage commitment decision may influence the balance between their tumor-promoting versus tumor-suppressing properties. 1. Introduction CD4+ T helper (Th) lymphocytes are essential for the regulation of immune responses as they are endowed with the ability to modulate the function of CD8+ cytotoxic T lymphocytes (CTLs) [1, 2], B cells [3], NK cells [4], macrophages, and dendritic cells [5, 6]. Following triggering of their T cell receptor (TCR) and in the presence of appropriate costimulatory signals and specific cytokines, na?ve CD4+ T lymphocytes differentiate into various effector or regulatory cells characterized by distinct functions and specific cytokine production profiles. For many years, it was believed that the expression of two mutually exclusive differentiation programs led to the polarization of na?ve CD4+ T cells towards either Th1 or Th2 lymphocytes [7, 8]. Terminally differentiated Th1 cells are characterized by the expression of the transcription factor Tbet and the production of IFN [9]. Th1 activate CTLs, macrophages and are required for the elimination of intracellular pathogens [7, 10]. Th1 cell lineage commitment is primarily triggered by IFN and IL-12 [11, 12]. Th2 lymphocytes, defined by transcription factor GATA3 expression and the secretion of IL-4, IL-5, IL-10, and IL-13, play an essential role in B cell-mediated humoral responses against extracellular pathogens and can inhibit Th1-dependent cellular immunity [13–15]. More recently, several subsets of CD4+ T cells exhibiting immunosuppressive activity have been described (extensively reviewed elsewhere [16–21]). These so-called regulatory T lymphocytes (Tregs) may be generated during T cell development in the thymus
References
[1]
J. C. Sun and M. J. Bevan, “Defective CD8 T cell memory following acute infection without CD4 T cell help,” Science, vol. 300, no. 5617, pp. 339–342, 2003.
[2]
J. C. Sun, M. A. Williams, and M. J. Bevan, “CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection,” Nature Immunology, vol. 5, no. 9, pp. 927–933, 2004.
[3]
M. Mitsdoerffer, Y. Lee, A. J?ger et al., “Proinflammatory T helper type 17 cells are effective B-cell helpers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14292–14297, 2010.
[4]
M. N. Kelly, M. Zheng, S. Ruan, J. Kolls, A. D'Souza, and J. E. Shellito, “Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina,” Journal of Immunology, vol. 190, no. 1, pp. 285–295, 2013.
[5]
D. G. DeNardo, J. B. Barreto, P. Andreu et al., “CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages,” Cancer Cell, vol. 16, no. 2, pp. 91–102, 2009.
[6]
M. Veldhoen, H. Moncrieffe, R. J. Hocking, C. J. Atkins, and B. Stockinger, “Modulation of dendritic cell function by naive and regulatory CD4+ T cells,” Journal of Immunology, vol. 176, no. 10, pp. 6202–6210, 2006.
[7]
S. Romagnani, “The Th1/Th2 paradigm,” Immunology Today, vol. 18, no. 6, pp. 263–266, 1997.
[8]
T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989.
[9]
S. J. Szabo, S. T. Kim, G. L. Costa, X. Zhang, C. G. Fathman, and L. H. Glimcher, “A novel transcription factor, T-bet, directs Th1 lineage commitment,” Cell, vol. 100, no. 6, pp. 655–669, 2000.
[10]
A. J. McAdam, B. A. Pulaski, S. S. Harkins, E. K. Hutter, E. M. Lord, and J. G. Frelinger, “Synergistic effects of co-expression of the Th1 cytokines IL-2 and IFN-γ on generation of murine tumor-reactive cytotoxic cells,” International Journal of Cancer, vol. 61, no. 5, pp. 628–634, 1995.
[11]
K. A. Hoag, M. F. Lipscomb, A. A. Izzo, and N. E. Street, “IL-12 and IFN-γ are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 17, no. 6, pp. 733–739, 1997.
[12]
K. Kohno, J. Kataoka, T. Ohtsuki et al., “IFN-γ-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12,” Journal of Immunology, vol. 158, no. 4, pp. 1541–1550, 1997.
[13]
A. Sj?lander, T. M. Baldwin, J. M. Curtis, and E. Handman, “Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis,” Journal of Immunology, vol. 160, no. 8, pp. 3949–3957, 1998.
[14]
W.-P. Zheng and R. A. Flavell, “The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells,” Cell, vol. 89, no. 4, pp. 587–596, 1997.
[15]
E. J. Pearce, P. Caspar, J.-M. Grzych, F. A. Lewis, and A. Sher, “Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni,” Journal of Experimental Medicine, vol. 173, no. 1, pp. 159–166, 1991.
[16]
E. M. Shevach, R. A. DiPaolo, J. Andersson, D.-M. Zhao, G. L. Stephens, and A. M. Thornton, “The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells,” Immunological Reviews, vol. 212, pp. 60–73, 2006.
[17]
E. M. Shevach, “Regulatory/suppressor T cells in health and disease,” Arthritis and Rheumatism, vol. 50, no. 9, pp. 2721–2724, 2004.
[18]
E. M. Shevach, “Regulatory T cells. Introduction,” Seminars in Immunology, vol. 16, no. 2, pp. 69–71, 2004.
[19]
S. Sakaguchi, “Regulatory T cells: history and perspective,” Methods in Molecular Biology, vol. 707, pp. 3–17, 2011.
[20]
Z. Fehérvari and S. Sakaguchi, “Development and function of CD25+CD4+ regulatory T cells,” Current Opinion in Immunology, vol. 16, no. 2, pp. 203–208, 2004.
[21]
A. Y. Rudensky, “Regulatory T cells and Foxp3,” Immunological Reviews, vol. 241, no. 1, pp. 260–268, 2011.
[22]
S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008.
[23]
W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006.
[24]
S. Z. Josefowicz, L.-F. Lu, and A. Y. Rudensky, “Regulatory T cells: mechanisms of differentiation and function,” Annual Review of Immunology, vol. 30, pp. 531–564, 2012.
[25]
M. P. Colombo and S. Piconese, “Regulatory T-cell inhibition versus depletion: the right choice in cancer immunotherapy,” Nature Reviews Cancer, vol. 7, no. 11, pp. 880–887, 2007.
[26]
J. A. Bluestone and A. K. Abbas, “Natural versus adaptive regulatory T cells,” Nature Reviews Immunology, vol. 3, no. 3, pp. 253–257, 2003.
[27]
G. Z. Song, J. Wang, P. Wang, J. D. Gray, and D. A. Horwitz, “IL-2 is essential for TGF-β to convert naive CD4+CD25—cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells,” Journal of Immunology, vol. 178, no. 4, pp. 2018–2027, 2007.
[28]
Q. Shi, H. Cao, J. Liu et al., “CD4+Foxp3+regulatory T cells induced by TGF-β, IL-2 and all-trans retinoic acid attenuate obliterative bronchiolitis in rat trachea transplantation,” International Immunopharmacology, vol. 11, no. 11, pp. 1887–1894, 2011.
[29]
T. S. Davidson, R. J. DiPaolo, J. Andersson, and E. M. Shevach, “Cutting edge: IL-2 is essential for TGF-β-mediated induction of Foxp3+ T regulatory cells,” Journal of Immunology, vol. 178, no. 7, pp. 4022–4026, 2007.
[30]
M. Galgani, A. di Giacomo, G. Matarese, and A. la Cava, “The Yin and Yang of CD4+ regulatory T cells in autoimmunity and cancer,” Current Medicinal Chemistry, vol. 16, no. 35, pp. 4626–4631, 2009.
[31]
S. Danese and S. Rutella, “The janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity,” Current Medicinal Chemistry, vol. 14, no. 6, pp. 649–666, 2007.
[32]
T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009.
[33]
P. Muranski and N. P. Restifo, “Essentials of Th17 cell commitment and plasticity,” Blood, vol. 121, no. 13, pp. 2402–2414, 2013.
[34]
C. M. Wilke, K. Bishop, D. Fox, and W. Zou, “Deciphering the role of Th17 cells in human disease,” Trends in Immunology, vol. 32, no. 12, pp. 603–611, 2011.
[35]
X. O. Yang, B. P. Pappu, R. Nurieva et al., “T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ,” Immunity, vol. 28, no. 1, pp. 29–39, 2008.
[36]
I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006.
[37]
I. Kryczek, M. Banerjee, P. Cheng et al., “Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments,” Blood, vol. 114, no. 6, pp. 1141–1149, 2009.
[38]
H. Kebir, I. Ifergan, J. I. Alvarez et al., “Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis,” Annals of Neurology, vol. 66, no. 3, pp. 390–402, 2009.
[39]
T. Korn, E. Bettelli, W. Gao et al., “IL-21 initiates an alternative pathway to induce proinflammatory T H17 cells,” Nature, vol. 448, no. 7152, pp. 484–487, 2007.
[40]
I. Kryczek, E. Zhao, Y. Liu et al., “Human TH17 cells are long-lived effector memory cells,” Science Translational Medicine, vol. 3, no. 104, Article ID 104ra100, 2011.
[41]
N. Martin-Orozco, P. Muranski, Y. Chung et al., “T helper 17 cells promote cytotoxic T cell activation in tumor immunity,” Immunity, vol. 31, no. 5, pp. 787–798, 2009.
[42]
K. A. Charles, H. Kulbe, R. Soper et al., “The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans,” The Journal of Clinical Investigation, vol. 119, no. 10, pp. 3011–3023, 2009.
[43]
M. Pelletier, L. Maggi, A. Micheletti et al., “Evidence for a cross-talk between human neutrophils and Th17 cells,” Blood, vol. 115, no. 2, pp. 335–343, 2010.
[44]
M. Ankathatti Munegowda, Y. Deng, S. J. Mulligan, and J. Xiang, “Th17 and Th17-stimulated CD8+ T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity,” Cancer Immunology, Immunotherapy, vol. 60, no. 10, pp. 1473–1484, 2011.
[45]
C. Dong, “Mouse Th17 cells: current understanding of their generation and regulation,” European Journal of Immunology, vol. 39, no. 3, pp. 640–644, 2009.
[46]
T. Korn, M. Mitsdoerffer, A. L. Croxford et al., “IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18460–18465, 2008.
[47]
L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human T H17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008.
[48]
R. Nurieva, X. O. Yang, G. Martinez et al., “Essential autocrine regulation by IL-21 in the generation of inflammatory T cells,” Nature, vol. 448, no. 7152, pp. 480–483, 2007.
[49]
C. Parham, M. Chirica, J. Timans et al., “A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R,” Journal of Immunology, vol. 168, no. 11, pp. 5699–5708, 2002.
[50]
G. L. Stritesky, N. Yeh, and M. H. Kaplan, “IL-23 promotes maintenance but not commitment to the Th17 lineage,” Journal of Immunology, vol. 181, no. 9, pp. 5948–5955, 2008.
[51]
D. J. Cua, J. Sherlock, Y. Chen et al., “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain,” Nature, vol. 421, no. 6924, pp. 744–748, 2003.
[52]
C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005.
[53]
C. A. Murphy, C. L. Langrish, Y. Chen et al., “Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1951–1957, 2003.
[54]
Y. Chung, S. H. Chang, G. J. Martinez et al., “Critical regulation of early Th17 cell differentiation by interleukin-1 signaling,” Immunity, vol. 30, no. 4, pp. 576–587, 2009.
[55]
Q. Chen, W. Yang, S. Gupta et al., “IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor,” Immunity, vol. 29, no. 6, pp. 899–911, 2008.
[56]
E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells,” Nature Immunology, vol. 8, no. 6, pp. 639–646, 2007.
[57]
N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007.
[58]
K. Ghoreschi, A. Laurence, X.-P. Yang et al., “Generation of pathogenic TH 17 cells in the absence of TGF-β 2 signalling,” Nature, vol. 467, no. 7318, pp. 967–971, 2010.
[59]
V. Soumelis and E. Volpe, “TH17 differentiation, a complex process in mouse and man,” Médecine Sciences, vol. 24, no. 11, pp. 925–927, 2008.
[60]
N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008.
[61]
K. Hebel, M. Rudolph, B. Kosak, H.-D. Chang, J. Butzmann, and M. C. Brunner-Weinzierl, “IL-1β and TGF-β act antagonistically in induction and differentially in propagation of human proinflammatory precursor CD4+ T cells,” Journal of Immunology, vol. 187, no. 11, pp. 5627–5635, 2011.
[62]
E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006.
[63]
I. Kryczek, S. Wei, W. Gong et al., “Cutting edge: IFN-γ enables APC to promote memory Th17 and Abate Th1 cell development,” Journal of Immunology, vol. 181, no. 9, pp. 5842–5846, 2008.
[64]
H. J. P. M. Koenen, R. L. Smeets, P. M. Vink, E. van Rijssen, A. M. H. Boots, and I. Joosten, “Human CD25highFoxp3pos regulatory T cells differentiate into IL-17 producing cells,” Blood, vol. 112, no. 6, pp. 2340–2352, 2008.
[65]
S. Hori, “Developmental plasticity of Foxp3+ regulatory T cells,” Current Opinion in Immunology, vol. 22, no. 5, pp. 575–582, 2010.
[66]
D. M. Tartar, A. M. VanMorlan, X. Wan et al., “FoxP3+RORγt+ T helper intermediates display suppressive function against autoimmune diabetes,” Journal of Immunology, vol. 184, no. 7, pp. 3377–3385, 2010.
[67]
M. Veldhoen, R. J. Hocking, R. A. Flavell, and B. Stockinger, “Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease,” Nature Immunology, vol. 7, no. 11, pp. 1151–1156, 2006.
[68]
M. O. Li, Y. Y. Wan, and R. A. Flavell, “T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation,” Immunity, vol. 26, no. 5, pp. 579–591, 2007.
[69]
L. Zhou, J. E. Lopes, M. M. W. Chong et al., “TGF-Β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function,” Nature, vol. 453, no. 7192, pp. 236–240, 2008.
[70]
M. D. Sharma, D.-Y. Hou, B. Baban et al., “Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice,” Immunity, vol. 33, no. 6, pp. 942–954, 2010.
[71]
X. O. Yang, R. Nurieva, G. J. Martinez et al., “Molecular antagonism and plasticity of regulatory and inflammatory T cell programs,” Immunity, vol. 29, no. 1, pp. 44–56, 2008.
[72]
M. Ayyoub, C. Raffin, and D. Valmori, “Generation of Th17 from human naive CD4+ T cells preferentially occurs from FOXP3+ Tregs upon costimulation via CD28 or CD5,” Blood, vol. 119, no. 20, pp. 4810–4812, 2012.
[73]
D. Valmori, C. Raffin, I. Raimbaud, and M. Ayyoub, “Human RORγt+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineagespecific polarizing factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19402–19407, 2010.
[74]
P. Muranski, Z. A. Borman, S. P. Kerkar et al., “Th17 cells are long lived and retain a stem cell-like molecular signature,” Immunity, vol. 35, no. 6, pp. 972–985, 2011.
[75]
A. Peters, Y. Lee, and V. K. Kuchroo, “The many faces of Th17 cells,” Current Opinion in Immunology, vol. 23, no. 6, pp. 702–706, 2011.
[76]
Y. K. Lee, H. Turner, C. L. Maynard et al., “Late developmental plasticity in the T helper 17 lineage,” Immunity, vol. 30, no. 1, pp. 92–107, 2009.
[77]
T. A. Moseley, D. R. Haudenschild, L. Rose, and A. H. Reddi, “Interleukin-17 family and IL-17 receptors,” Cytokine and Growth Factor Reviews, vol. 14, no. 2, pp. 155–174, 2003.
[78]
E. Lockhart, A. M. Green, and J. L. Flynn, “IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection,” Journal of Immunology, vol. 177, no. 7, pp. 4662–4669, 2006.
[79]
Y. Yoshiga, D. Goto, D. Segawa et al., “Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis,” International Journal of Molecular Medicine, vol. 22, no. 3, pp. 369–374, 2008.
[80]
S.-J. Liu, J.-P. Tsai, C.-R. Shen et al., “Induction of a distinct CD8 Tnc17 subset by transforming growth factor-β and interleukin-6,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 354–360, 2007.
[81]
X. Zhu, L. A. Mulcahy, R. A. A. Mohammed et al., “IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines,” Breast Cancer Research, vol. 10, no. 6, article R95, 2008.
[82]
S. Ferretti, O. Bonneau, G. R. Dubois, C. E. Jones, and A. Trifilieff, “Il-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger,” Journal of Immunology, vol. 170, no. 4, pp. 2106–2112, 2003.
[83]
D.-M. Kuang, C. Peng, Q. Zhao et al., “Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients,” Journal of Immunology, vol. 185, no. 3, pp. 1544–1549, 2010.
[84]
Z. Yang, B. Zhang, D. Li et al., “Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model,” PLoS ONE, vol. 5, no. 1, Article ID e8922, 2010.
[85]
M. D. L. L. Garcia-Hernandez, H. Hamada, J. B. Reome, S. K. Misra, M. P. Tighe, and R. W. Dutton, “Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice,” Journal of Immunology, vol. 184, no. 8, pp. 4215–4227, 2010.
[86]
C. S. Hinrichs, A. Kaiser, C. M. Paulos et al., “Type 17 CD8+ T cells display enhanced antitumor immunity,” Blood, vol. 114, no. 3, pp. 596–599, 2009.
[87]
L. Li, L. Huang, A. L. Vergis et al., “IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury,” The Journal of Clinical Investigation, vol. 120, no. 1, pp. 331–342, 2010.
[88]
J. Liu, Y. Duan, X. Cheng et al., “IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma,” Biochemical and Biophysical Research Communications, vol. 407, no. 2, pp. 348–354, 2011.
[89]
M. Numasaki, J.-I. Fukushi, M. Ono et al., “Interleukin-17 promotes angiogenesis and tumor growth,” Blood, vol. 101, no. 7, pp. 2620–2627, 2003.
[90]
S. Ryu, J. H. Lee, and S. I. Kim, “IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes,” Clinical Rheumatology, vol. 25, no. 1, pp. 16–20, 2006.
[91]
D. He, H. Li, N. Yusuf et al., “IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells,” Journal of Immunology, vol. 184, no. 5, pp. 2281–2288, 2010.
[92]
L. Wang, T. Yi, M. Kortylewski, D. M. Pardoll, D. Zeng, and H. Yu, “IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway,” Journal of Experimental Medicine, vol. 206, no. 7, pp. 1457–1464, 2009.
[93]
I. Kryczek, S. Wei, W. Szeliga, L. Vatan, and W. Zou, “Endogenous IL-17 contributes to reduced tumor growth and metastasis,” Blood, vol. 114, no. 2, pp. 357–359, 2009.
[94]
J.-P. Zhang, J. Yan, J. Xu et al., “Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients,” Journal of Hepatology, vol. 50, no. 5, pp. 980–989, 2009.
[95]
X. Chen, J. Wan, J. Liu et al., “Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients,” Lung Cancer, vol. 69, no. 3, pp. 348–354, 2010.
[96]
X. Su, J. Ye, E. C. Hsueh, Y. Zhang, D. F. Hoft, and G. Peng, “Tumor microenvironments direct the recruitment and expansion of human Th17 cells,” Journal of Immunology, vol. 184, no. 3, pp. 1630–1641, 2010.
[97]
Y. Tian, C. Yuan, D. Ma et al., “IL-21 and IL-12 inhibit differentiation of Treg and TH17 cells and enhance cytotoxicity of peripheral blood mononuclear cells in patients with cervical cancer,” International Journal of Gynecological Cancer, vol. 21, no. 9, pp. 1672–1678, 2011.
[98]
H. S?ndergaard, K. S. Frederiksen, P. Thygesen et al., “Interleukin 21 therapy increases the density of tumor infiltrating CD8+ T cells and inhibits the growth of syngeneic tumors,” Cancer Immunology, Immunotherapy, vol. 56, no. 9, pp. 1417–1428, 2007.
[99]
S. J. Aujla, Y. R. Chan, M. Zheng et al., “IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia,” Nature Medicine, vol. 14, no. 3, pp. 275–281, 2008.
[100]
Y. Zheng, D. M. Danilenko, P. Valdez et al., “Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis,” Nature, vol. 445, no. 7128, pp. 648–651, 2007.
[101]
A. L. Gurney, “IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues,” International Immunopharmacology, vol. 4, no. 5, pp. 669–677, 2004.
[102]
T. Duhen, R. Geiger, D. Jarrossay, A. Lanzavecchia, and F. Sallusto, “Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells,” Nature Immunology, vol. 10, no. 8, pp. 857–863, 2009.
[103]
R. Jiang, Z. Tan, L. Deng et al., “Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3,” Hepatology, vol. 54, no. 3, pp. 900–909, 2011.
[104]
R. Jiang, H. Wang, L. Deng, et al., “IL-22 is related to development of human colon cancer by activation of STAT3,” BMC Cancer, vol. 13, no. 1, article 59, 2013.
[105]
T. Liu, L. Peng, P. Yu, et al., “Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer,” Journal of Clinical Immunology, vol. 32, no. 6, pp. 1332–1339, 2012.
[106]
S. Rutz, R. Noubade, C. Eidenschenk et al., “Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells,” Nature Immunology, vol. 12, no. 12, pp. 1238–1245, 2011.
[107]
V. Lazarevic, X. Chen, J.-H. Shim et al., “T-bet represses TH 17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt,” Nature Immunology, vol. 12, no. 1, pp. 96–104, 2011.
[108]
Y. Zhuang, L.-S. Peng, Y.-L. Zhao et al., “Increased intratumoral IL-22-producing CD4+ T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival,” Cancer Immunology, Immunotherapy, vol. 61, no. 11, pp. 1965–1975, 2012.
[109]
G. F. Weber, F. C. Gaertner, W. Erl et al., “IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase,” Journal of Immunology, vol. 177, no. 11, pp. 8266–8272, 2006.
[110]
L. M. Curd, S. E. Favors, and R. K. Gregg, “Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells,” Clinical and Experimental Immunology, vol. 168, no. 2, pp. 192–199, 2012.
[111]
Z. J. Ye, Q. Zhou, W. Yin, et al., “Interleukin 22-producing CD4+ T cells in malignant pleural effusion,” Cancer Letters, vol. 326, no. 1, pp. 23–32, 2012.
[112]
P. Ragnhammar, “Anti-tumoral effect of GM-CSF with or without cytokines and monoclonal antibodies in solid tumors,” Medical Oncology, vol. 13, no. 3, pp. 167–176, 1996.
[113]
P. Ragnhammar and M. Wadhwa, “Neutralising antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF) in carcinoma patients following GM-CSF combination therapy,” Medical Oncology, vol. 13, no. 3, pp. 161–166, 1996.
[114]
L. Codarri, G. Gyülvészii, V. Tosevski et al., “RORγ3t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation,” Nature Immunology, vol. 12, no. 6, pp. 560–567, 2011.
[115]
M. El-Behi, B. Ciric, H. Dai et al., “The encephalitogenicity of TH 17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF,” Nature Immunology, vol. 12, no. 6, pp. 568–575, 2011.
[116]
S. Abromson-Leeman, R. T. Bronson, and M. E. Dorf, “Encephalitogenic T cells that stably express both T-bet and RORγt consistently produce IFNγ but have a spectrum of IL-17 profiles,” Journal of Neuroimmunology, vol. 215, no. 1-2, pp. 10–24, 2009.
[117]
T. Iida, M. Iwahashi, M. Katsuda et al., “Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer,” Oncology Reports, vol. 25, no. 5, pp. 1271–1277, 2011.
[118]
S. He, M. Fei, Y. Wu et al., “Distribution and clinical significance of Th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients,” International Journal of Molecular Sciences, vol. 12, no. 11, pp. 7424–7437, 2011.
[119]
K. S. Sfanos, T. C. Bruno, C. H. Maris et al., “Phenotypic analysis of prostate-infiltrating lymphocytes reveals T H17 and Treg skewing,” Clinical Cancer Research, vol. 14, no. 11, pp. 3254–3261, 2008.
[120]
E. Derhovanessian, V. Adams, K. H?hnel et al., “Pretreatment frequency of circulating IL-17+CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients,” International Journal of Cancer, vol. 125, no. 6, pp. 1372–1379, 2009.
[121]
Z.-J. Ye, Q. Zhou, Y.-Y. Gu et al., “Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion,” Journal of Immunology, vol. 185, no. 10, pp. 6348–6354, 2010.
[122]
J. L. Gnerlich, J. B. Mitchem, J. S. Weir et al., “Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer,” Journal of Immunology, vol. 185, no. 7, pp. 4063–4071, 2010.
[123]
M. D. Sharma, D.-Y. Hou, Y. Liu et al., “Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes,” Blood, vol. 113, no. 24, pp. 6102–6111, 2009.
[124]
P. Muranski, A. Boni, P. A. Antony et al., “Tumor-specific Th17-polarized cells eradicate large established melanoma,” Blood, vol. 112, no. 2, pp. 362–373, 2008.
[125]
D. Alizadeh, M. Trad, N. T. Hanke, et al., “Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T cell transfer in breast cancer,” Cancer Research, 2013.
[126]
F. Chalmin, G. Mignot, M. Bruchard et al., “Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression,” Immunity, vol. 36, no. 3, pp. 362–373, 2012.