We previously reported monocyte-derived multipotential cells (MOMCs), which include progenitors capable of differentiating into a variety of mesenchymal cells and endothelial cells. In vitro generation of MOMCs from circulating CD14+ monocytes requires their binding to extracellular matrix (ECM) protein and exposure to soluble factor(s) derived from circulating CD14- cells. Here, we investigated the molecular factors involved in MOMC generation by examining the binding of monocytes to ECM proteins. We found that MOMCs were obtained on the fibronectin, but not on type I collagen, laminin, or poly-L-lysine. MOMC generation was followed by changes in the expression profiles of transcription factors and was completely inhibited by either anti-α5 integrin antibody or a synthetic peptide that competed with the RGD domain for the β1-integrin binding site. These results indicate that acquisition of the multidifferentiation potential by circulating monocytes depends on their binding to the RGD domain of fibronectin via cell-surface α5β1 integrin. 1. Introduction Circulating CD14+ monocytes originate from hematopoietic stem cells in the bone marrow and are heterogeneous in terms of their surface markers, phagocytic capacity, and differentiation potentials [1]. Until recently, it was believed that the differentiation potential of monocytes was restricted to cells that function as phagocytes and/or antigen-presenting cells, including macrophages, dendritic cells, and osteoclasts, but recent accumulating evidence indicates that circulating monocytes have the potential to differentiate into a variety of cell types other than phagocytes [2–6]. We recently identified a peripheral blood-derived cell population that has a fibroblast-like morphology in culture and a unique phenotype positive for CD14, CD45, CD34, and type I collagen (collagen (I)) [7]. These cells originate from circulating CD14+ monocytes and include primitive cells that can differentiate into cells with morphologic, phenotypic, and functional features of several distinct mesenchymal cell types, including bone, cartilage, fat, and skeletal and cardiac muscle, as well as neurons and endothelium; thus, they are termed monocyte-derived multipotential cells (MOMCs) [7–10]. It is thus plausible that circulating monocytes are involved in tissue remodelling and regeneration through MOMC differentiation under physiologic and pathogenic conditions in vivo. MOMCs are obtained in 7-day cultures of peripheral blood mononuclear cells (PBMCs) on fibronectin-coated plastic plates with 10% fetal bovine serum (FBS) as
References
[1]
S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005.
[2]
R. Bucala, L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami, “Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair,” Molecular Medicine, vol. 1, no. 1, pp. 71–81, 1994.
[3]
Y. Zhao, D. Glesne, and E. Huberman, “A human peripheral blood monocyte-derived subset acts as pluripotent stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2426–2431, 2003.
[4]
P. Romagnani, F. Annunziato, F. Liotta et al., “CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors,” Circulation Research, vol. 97, no. 4, pp. 314–322, 2005.
[5]
B. Dresske, N. E. El Mokhtari, H. Ungefroren et al., “Multipotent cells of monocytic origin improve damaged heart function,” American Journal of Transplantation, vol. 6, no. 5, part I, pp. 947–958, 2006.
[6]
N. Seta and M. Kuwana, “Derivation of multipotent progenitors from human circulating CD14+ monocytes,” Experimental Hematology, vol. 38, no. 7, pp. 557–563, 2010.
[7]
M. Kuwana, Y. Okazaki, H. Kodama et al., “Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation,” Journal of Leukocyte Biology, vol. 74, no. 5, pp. 833–845, 2003.
[8]
H. Kodama, T. Inoue, R. Watanabe et al., “Cardiomyogenic potential of mesenchymal progenitors derived from human circulating CD14+ monocytes,” Stem Cells and Development, vol. 14, no. 6, pp. 676–686, 2005.
[9]
H. Kodama, T. Inoue, R. Watanabe et al., “Neurogenic potential of progenitors derived from human circulating CD14+ monocytes,” Immunology and Cell Biology, vol. 84, no. 2, pp. 209–217, 2006.
[10]
M. Kuwana, Y. Okazaki, H. Kodama, T. Satoh, Y. Kawakami, and Y. Ikeda, “Endothelial differentiation potential of human monocyte-derived multipotential cells,” Stem Cells, vol. 24, no. 12, pp. 2733–2743, 2006.
[11]
http://rsb.info.nih.gov/ij/index.html.
[12]
S. Bennett, S. B. Por, E. R. Stanley, and S. N. Breit, “Monocyte proliferation in a cytokine-free, serum-free system,” Journal of Immunological Methods, vol. 153, no. 1-2, pp. 201–212, 1992.
[13]
S. T. Moss and J. A. Hamilton, “Proliferation of a subpopulation of human peripheral blood monocytes in the presence of colony stimulating factors may contribute to the inflammatory process in diseases such as rheumatoid arthritis,” Immunobiology, vol. 202, no. 1, pp. 18–25, 2000.
[14]
S. S. Jacob, P. Shastry, and P. R. Sudhakaran, “Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum,” Molecular and Cellular Biochemistry, vol. 233, no. 1-2, pp. 9–17, 2002.
[15]
S. Stenman and A. Vaheri, “Distribution of a major connective tissue protein, fibronectin, in normal human tissues,” Journal of Experimental Medicine, vol. 147, no. 4, pp. 1054–1064, 1978.
[16]
A. R. De Fougerolles and V. E. Koteliansky, “Regulation of monocyte gene expression by the extracellular matrix and its functional implications,” Immunological Reviews, vol. 186, pp. 208–220, 2002.
[17]
F. G. Giancotti, “Integrin signaling: specificity and control of cell survival and cell cycle progression,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 691–700, 1997.
[18]
C. Shi and D. I. Simon, “Integrin signals, transcription factors, and monocyte differentiation,” Trends in Cardiovascular Medicine, vol. 16, no. 5, pp. 146–152, 2006.
[19]
K. Kumano and M. Kurokawa, “The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells,” Journal of Cellular Physiology, vol. 222, no. 2, pp. 282–285, 2010.
[20]
K. Iwatsuki, K. Tanaka, T. Kaneko et al., “Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3,” Oncogene, vol. 24, no. 7, pp. 1129–1137, 2005.
[21]
J. R. A. J. Moonen, G. Krenning, M. G. L. Brinker, J. A. Koerts, M. J. A. Van Luyn, and M. C. Harmsen, “Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny,” Cardiovascular Research, vol. 86, no. 3, pp. 506–515, 2010.
[22]
M. Wu, D. S. Melichian, M. De La Garza et al., “Essential roles for early growth response transcription factor Egr-1 in tissue fibrosis and wound healing,” American Journal of Pathology, vol. 175, no. 3, pp. 1041–1055, 2009.
[23]
B. H. Luo, C. V. Carman, and T. A. Springer, “Structural basis of integrin regulation and signaling,” Annual Review of Immunology, vol. 25, pp. 619–647, 2007.
[24]
C. Weber, R. Alon, B. Moser, and T. A. Springer, “Sequential regulation of α4β1 and α5β1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis,” Journal of Cell Biology, vol. 134, no. 4, pp. 1063–1073, 1996.
[25]
K. Feghali and D. Grenier, “Priming effect of fibronectin fragments on the macrophage inflammatory response: potential contribution to periodontitis,” Inflammation, vol. 35, no. 5, pp. 1696–1705, 2012.
[26]
D. H. Beezhold and C. Personius, “Fibronectin fragments stimulate tumor necrosis factor secretion by human monocytes,” Journal of Leukocyte Biology, vol. 51, no. 1, pp. 59–64, 1992.