全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Average IFN-γ Secreting Capacity of Specific CD8+ T Cells Is Compromised While Increasing Copies of a Single T Cell Epitope Encoded by DNA Vaccine

DOI: 10.1155/2012/478052

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous studies suggested that both the frequency and the mean fluorescence intensity (MFI) of cytokine secreting T cells could be of great value for immunogenicity evaluation of a vaccine. In this study, by constructing epitope-based DNA vaccines encoding a previously identified CD8+ T cell epitope, we investigated the influence of multiplying epitope copies on both the frequency and the MFI of specific IFN-γ secreting CD8+ T cells. We found that frequencies of specific CD8+ T cell could be improved by multiplying epitope copies, while the MFI of IFN-γ secreted by epitope-specific CD8+ T cells decreased synchronously. And further analysis showed that the decrease of MFI was not caused by the functional avidity variation of CD8+ T cell receptor. 1. Introduction Traditional vaccines have dramatically diminished morbidity and mortality of a large number of infectious diseases, while their success cannot be easily translated into developing of vaccines against HIV, malaria, and cancer [1]. Novel approaches are urgently needed. In formality of either recombinant vectored vaccines or synthetic peptides, epitope-based vaccine represents one of these emerging approaches. Taking benefits of well-defined epitopes with a minimal structure influence, this epitope-based approach can focus immune responses on conserved epitopes and also increase the potency and breadth of specific immune responses [2, 3]. Although it has been widely employed in vaccine development against HIV, HCV, HBV, HPV, cancer, and Helicobacter pylori [4, 5], its relatively weak immunogenicity still remains a major restraint for the practical application of epitope-based vaccines [6]. Previous studies suggested that the immunogenicity of epitope-based DNA vaccines could be enhanced by introducing intracellular targeting signals to direct the encoded gene product to the endoplasmic reticulum (ER) [7, 8], by including Pan HLA-DR epitope (PADRE) to support the development of specific immune responses [7, 9] and by incorporating spacer sequences between epitopes to optimize epitope processing [10]. Most recently, another study also suggested that increasing the copy number of epitope coding gene could augment the magnitude of specific T cell responses against a carcinoembryonic-antigen-(CEA-) derived epitope [11]. However, in most of these studies, the frequency of specific cytokine (IFN- ) secreting T cells was typically used as the parameter to measure the specific T cell responses. But this might not be the best indicator of protective T cell responses, because several lines of evidence have

References

[1]  S. Sadanand, “Vaccination: the present and the future,” Yale Journal of Biology and Medicine, vol. 84, no. 4, pp. 353–359, 2011.
[2]  A. Sette, M. Newman, B. Livingston et al., “Optimizing vaccine design for cellular processing, MHC binding and TCR recognition,” Tissue Antigens, vol. 59, no. 6, pp. 443–451, 2002.
[3]  A. Sette, E. Keogh, G. Ishioka et al., “Epitope identification and vaccine design for cancer immunotherapy,” Current Opinion in Investigational Drugs, vol. 3, no. 1, pp. 132–139, 2002.
[4]  A. Sette and J. Fikes, “Epitope-based vaccines: an update on epitope identification, vaccine design and delivery,” Current Opinion in Immunology, vol. 15, no. 4, pp. 461–470, 2003.
[5]  L. Guo, K. Liu, G. Xu, et al., “Prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA against Helicobacter pylori infection in a BALB/c mice model,” Applied Microbiology and Biotechnology, vol. 95, no. 6, pp. 1437–1444, 2012.
[6]  S. Iurescia, D. Fioretti, V. M. Fazio, and M. Rinaldi, “Design and pre-clinical development of epitope-based DNA vaccines against B-cell lymphoma,” Current Gene Therapy, vol. 11, no. 5, pp. 414–422, 2011.
[7]  G. Y. Ishioka, J. Fikes, G. Hermanson et al., “Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes,” Journal of Immunology, vol. 162, no. 7, pp. 3915–3925, 1999.
[8]  K. Anderson, P. Cresswell, M. Gammon, J. Hermes, A. Williamson, and H. Zweerink, “Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis,” Journal of Experimental Medicine, vol. 174, no. 2, pp. 489–492, 1991.
[9]  J. Alexander, M. F. Del Guercio, A. Maewal et al., “Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses,” Journal of Immunology, vol. 164, no. 3, pp. 1625–1633, 2000.
[10]  B. D. Livingston, M. Newman, C. Crimi, D. McKinney, R. Chesnut, and A. Sette, “Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines,” Vaccine, vol. 19, no. 32, pp. 4652–4660, 2001.
[11]  D. Li, S. Hua, Y. Fan et al., “DNA vaccine expressing repeated carcinoembryonic antigen (CEA)625-667 induces strong immunity in mice,” Immunology Letters, vol. 135, no. 1-2, pp. 124–128, 2011.
[12]  S. C. Derrick, I. M. Yabe, A. Yang, and S. L. Morris, “Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells,” Vaccine, vol. 29, no. 16, pp. 2902–2909, 2011.
[13]  P. Shooshtari, E. S. Fortuno, D. Blimkie et al., “Correlation analysis of intracellular and secreted cytokines via the generalized integrated mean fluorescence intensity,” Cytometry Part A, vol. 77, no. 9, pp. 873–880, 2010.
[14]  P. A. Darrah, D. T. Patel, P. M. De Luca et al., “Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major,” Nature Medicine, vol. 13, no. 7, pp. 843–850, 2007.
[15]  J. Xu, L. Ren, X. Huang et al., “Sequential priming and boosting with heterologous HIV immunogens predominantly stimulated T cell immunity against conserved epitopes,” AIDS, vol. 20, no. 18, pp. 2293–2303, 2006.
[16]  M. D. Hesse, A. Y. Karulin, B. O. Boehm, P. V. Lehmann, and M. Tary-Lehmann, “A T cell clone's avidity is a function of its activation state,” Journal of Immunology, vol. 167, no. 3, pp. 1353–1361, 2001.
[17]  S. A. Plotkin, “Correlates of vaccine-induced immunity,” Clinical Infectious Diseases, vol. 47, no. 3, pp. 401–409, 2008.
[18]  N. Shulman, M. Bellew, G. Snelling et al., “Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials,” Cytometry Part A, vol. 73, no. 9, pp. 847–856, 2008.
[19]  M. Hofmann, M. Radsak, G. Rechtsteiner et al., “T cell avidity determines the level of CTL activation,” European Journal of Immunology, vol. 34, no. 7, pp. 1798–1806, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133