Clinical symptoms vary in thyrotoxicosis, and severity of these depends on many factors. Over the last years, impact of genetic factors upon the development and clinical significance of thyrotoxic symptoms became evident. It is known that a production of T3 in various tissues is limited by deiodinase 2 (D2). Recent studies revealed that certain single nucleotide polymorphisms (including threonine (Thr) to alanine (Ala) replacement in D2 gene codon 92, D2 Thr92Ala) affect T3 levels in tissues and in serum. Individuals with Ala92Ala genotype have lower D2 activity in tissues, compared with that in individuals with other genotypes. In our study, we have assessed an association of D2 Thr92Ala polymorphism with (1) frequency of disease development, (2) severity of clinical symptoms of thyrotoxicosis, and (3) rate of remissions, in Graves' disease patients. 1. Introduction Over the last years, much attention has been paid to the emerging concept of a “personalized therapy.” This recently developed approach, in particular, presumes using the information on patient’s genotypes for the optimization of one’s therapy. Analysis of genetic predisposition to sulfonylurea drug response in diabetes patients (Ser1369Ala variant in ABCC8 gene) serves as an example of the personalized therapy [1]. Ever increased introduction of genetic tests to the clinical laboratory promises developing a new therapeutic strategy—the personalized therapy of various diseases. In the current study, we have evaluated human type 2 deiodinase gene (hD2) polymorphism Thr92Ala as a potential genetic predictor of response to thyrostatic therapy in Graves’ disease (GD). Deiodinases are the selenoenzymes regulating the transformation of thyroxin (T4) into triiodothyronine (T3) [2–4]. Type 1 deiodinase (D1) is expressed and synthesized in liver, kidney, and thyroid gland [2, 3] and is responsible for the levels of circulating T3 hormone [2–6]. Type 2 deiodinase (D2) enables T3 production in central nervous system, pituitary gland, brown adipose tissue, cardiac and skeletal muscle, and placenta [2–4]; it is expressed on lower levels in liver and kidney [2, 3]. Thus, D2 plays the key role in local tissue T3 production [6–11]. According to the published data, type 2 deiodinase activities increase manyfold in some tissues in Graves’ disease patients [10]. Recent studies showed that polymorphisms of some deiodinase genes affect the production of thyroid hormones: human D2 gene, threonine (Thr) to alanine (Ala) replacement in codon 92 (D2 Thr92Ala) among them [2, 5, 12]. Ala92Ala homozygous subjects
References
[1]
Z. Schroner, M. Javorsky, M. Kozarova, and I. Tkac, “Pharmacogenetics of oral antidiabetic treatment,” Bratislavské Lekárske Listy, vol. 112, no. 8, pp. 441–446, 2011.
[2]
A. C. Bianco, D. Salvatore, B. Gereben, M. J. Berry, and P. R. Larsen, “Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases,” Endocrine Reviews, vol. 23, no. 1, pp. 38–89, 2002.
[3]
J. K?hrle, “Local activation and inactivation of thyroid hormones: the deiodinase family,” Molecular and Cellular Endocrinology, vol. 151, no. 1-2, pp. 103–119, 1999.
[4]
D. Salvatore, T. Bartha, J. W. Harney, and P. R. Larsen, “Molecular biological and biochemical characterization of the human type 2 selenodeiodinase,” Endocrinology, vol. 137, no. 8, pp. 3308–3315, 1996.
[5]
R. P. Peeters, H. Van Toor, W. Klootwijk et al., “Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 6, pp. 2880–2888, 2003.
[6]
R. P. Peeters, W. M. van der Deure, and T. J. Visser, “Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases,” European Journal of Endocrinology, vol. 155, no. 5, pp. 655–662, 2006.
[7]
A. L. Maia, B. W. Kim, S. A. Huang, J. W. Harney, and P. R. Larsen, “Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans,” The Journal of Clinical Investigation, vol. 115, no. 9, pp. 2524–2533, 2005.
[8]
J. T. Nicoloff, S. M. Lum, C. A. Spencer, and R. Morris, “Peripheral autoregulation of thyroxine to triiodothyronine conversion in man,” Hormone and Metabolic Research, Supplement, vol. 14, pp. 74–79, 1984.
[9]
A. Pilo, G. Iervasi, F. Vitek, M. Ferdeghini, F. Cazzuola, and R. Bianchi, “Thyroidal and peripheral production of 3,5,3'-triiodothyronine in humans by multicompartmental analysis,” American Journal of Physiology, vol. 258, no. 4, pp. E715–E726, 1990.
[10]
D. Salvatore, H. Tu, J. W. Harney, and P. R. Larsen, “Type 2 iodothyronine deiodinase is highly expressed in human thyroid,” The Journal of Clinical Investigation, vol. 98, no. 4, pp. 962–968, 1996.
[11]
J. Pachucki, J. Hopkins, R. Peeters et al., “Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis,” Endocrinology, vol. 142, no. 1, pp. 13–20, 2001.
[12]
L. H. Canani, C. Capp, J. M. Dora et al., “The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 6, pp. 3472–3478, 2005.
[13]
T. W. Guo, F. C. Zhang, M. S. Yang et al., “Positive association of the DIO2 (deiodinase type 2) gene with mental retardation in the iodine-deficient areas of China,” Journal of Medical Genetics, vol. 41, no. 8, pp. 585–590, 2004.
[14]
D. Mentuccia, L. Proietti-Pannunzi, K. Tanner et al., “Association between a novel variant of the human type 2 deiodinase gene Thr92Ala and insulin resistance: evidence of interaction with the Trp64Arg variant of the beta-3-adrenergic receptor,” Diabetes, vol. 51, no. 3, pp. 880–883, 2002.
[15]
O. Gumieniak, T. S. Perlstein, J. S. Williams et al., “Ala92 type 2 deiodinase allele increases risk for the development of hypertension,” Hypertension, vol. 49, no. 3, pp. 461–466, 2007.
[16]
E. Grineva, A. Babenko, N. Vahrameeva et al., “Type 2 deiodinase Thr92Ala polymorphism impact on clinical course and myocardial remodeling in patients with graves' disease,” Cell Cycle, vol. 8, no. 16, pp. 2565–2569, 2009.
[17]
R. S. Bahn, H. B. Burch, D. S. Cooper, et al., “Hyperthyroidism management guidelines,” Endocrine Practice, vol. 17, no. 3, pp. 1–65, 2011.