全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kidney Diseases Caused by Complement Dysregulation: Acquired, Inherited, and Still More to Come

DOI: 10.1155/2012/695131

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inherited and acquired dysregulation of the complement alternative pathway plays an important role in multiple renal diseases. In recent years, the identification of disease-causing mutations and genetic variants in complement regulatory proteins has contributed significantly to our knowledge of the pathogenesis of complement associated glomerulopathies. In these diseases defective complement control leading to the deposition of activated complement products plays a key role. Consequently, complement-related glomerulopathies characterized by glomerular complement component 3 (C3) deposition in the absence of local immunoglobulin deposits are now collectively described by the term “C3 glomerulopathies.” Therapeutic strategies for reestablishing complement regulation by either complement blockade with the anti-C5 monoclonal antibody eculizumab or plasma substitution have been successful in several cases of C3 glomerulopathies. However, further elucidation of the underlying defects in the alternative complement pathway is awaited to develop pathogenesis-specific therapies. 1. Introduction The central function of the kidney for whole body homeostasis is based on adequate blood flow and pressure, sufficient glomerular capillary surface for selective filtration, and subsequent secretion and reabsorption of solutes in the tubular system. The essential role of the glomerulus as a filtration unit can be estimated by the fact that most diseases leading to chronic kidney disease and end-stage renal disease with the need for dialysis or transplantation are caused by glomerulopathies. The glomerulus as a specialized capillary convolute is prone to any vascular damage and is affected as part of a generalized microangiopathy in common diseases such as diabetes mellitus or arterial hypertension. However, the glomerulus can also be affected by specific circulating factors, including antibodies against glomerular antigens, circulating immune complexes, or activated factors of a dysregulated complement system. The complement system as an essential component of the innate immune system plays an indispensable role in the elimination of invading microorganisms as a first line of defense [1, 2]. Furthermore, the complement system bridges innate and adaptive immunity. The cross-talk between toll-like receptors—as another key component of the innate immune system—and the complement system has been a key aspect of research as of their synergistic interaction to increase activation of inflammatory responses [3]. Complement activation runs through three major pathways (classic,

References

[1]  M. J. Walport, “Advances in immunology: complement (first of two parts),” The New England Journal of Medicine, vol. 344, no. 14, pp. 1058–1066, 2001.
[2]  M. J. Walport, “Advances in immunology: complement (second of two parts),” The New England Journal of Medicine, vol. 344, no. 15, pp. 1140–1144, 2001.
[3]  B. Holst, A.-C. Raby, J. E. Hall, and M. O. Labéta, “Complement takes its Toll: an inflammatory crosstalk between Toll-like receptors and the receptors for the complement anaphylatoxin C5a,” Anaesthesia, vol. 67, no. 1, pp. 60–64, 2012.
[4]  P. F. Zipfel and C. Skerka, “Complement regulators and inhibitory proteins,” Nature Reviews Immunology, vol. 9, no. 10, pp. 729–740, 2009.
[5]  F. Fakhouri, V. Frémeaux-Bacchi, L. H. No?l, H. T. Cook, and M. C. Pickering, “C3 glomerulopathy: a new classification,” Nature Reviews Nephrology, vol. 6, no. 8, pp. 494–499, 2010.
[6]  S. Sethi and F. C. Fervenza, “Membranoproliferative glomerulonephritis—a new look at an old entity,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1119–1131, 2012.
[7]  D. P. Gale, E. G. de Jorge, H. T. Cook et al., “Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis,” The Lancet, vol. 376, no. 9743, pp. 794–801, 2010.
[8]  J. Caprioli, P. Bettinaglio, P. F. Zipfel et al., “The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20,” Journal of the American Society of Nephrology, vol. 12, no. 2, pp. 297–307, 2001.
[9]  E. C. Jackson, A. J. McAdams, C. F. Strife, J. Forristal, T. R. Welch, and C. D. West, “Differences between membranoproliferative glomerulonephritis types I and III in clinical presentation, glomerular morphology, and complement perturbation,” American Journal of Kidney Diseases, vol. 9, no. 2, pp. 115–120, 1987.
[10]  S. Sethi, C. M. Nester, and R. J. H. Smith, “Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion,” Kidney International, vol. 81, no. 5, pp. 434–441, 2012.
[11]  S. Sethi, F. C. Fervenza, Y. Zhang et al., “Proliferative glomerulonephritis secondary to dysfunction of the alternative pathway of complement,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 1009–1017, 2011.
[12]  A. Servais, L.-H. No?l, L. T. Roumenina et al., “Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies,” Kidney International, vol. 82, no. 4, pp. 454–464, 2012.
[13]  J. L. McRae, T. G. Duthy, K. M. Griggs et al., “Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein,” Journal of Immunology, vol. 174, no. 10, pp. 6250–6256, 2005.
[14]  Y. Athanasiou, K. Voskarides, D. P. Gale et al., “Familial C3 glomerulopathy associated with CFHR5 mutations: clinical characteristics of 91 patients in 16 pedigrees,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 6, pp. 1436–1446, 2011.
[15]  L. G. Fritsche, N. Lauer, A. Hartmann et al., “An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD),” Human Molecular Genetics, vol. 19, no. 23, pp. 4694–4704, 2010.
[16]  A. G. Gharavi, K. Kiryluk, M. Choi et al., “Genome-wide association study identifies susceptibility loci for IgA nephropathy,” Nature Genetics, vol. 43, no. 4, pp. 321–327, 2011.
[17]  T. H. Malik, P. J. Lavin, E. G. De Jorge et al., “A hybrid CFHR3-1 gene causes familial C3 glomerulopathy,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1155–1160, 2012.
[18]  S. Sethi, F. C. Fervenza, Y. Zhang et al., “C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up,” Kidney International, vol. 82, no. 4, pp. 465–473, 2012.
[19]  R. J. H. Smith, C. L. Harris, and M. C. Pickering, “Dense deposit disease,” Molecular Immunology, vol. 48, no. 14, pp. 1604–1610, 2011.
[20]  S. Sethi, J. D. Gamez, J. A. Vrana et al., “Glomeruli of dense deposit disease contain components of the alternative and terminal complement pathway,” Kidney International, vol. 75, no. 9, pp. 952–960, 2009.
[21]  R. E. Spitzer, E. H. Vallota, J. Forristal et al., “Serum C′3 lytic system in patients with glomerulonephritis,” Science, vol. 164, no. 3878, pp. 436–437, 1969.
[22]  Y. Zhang, N. C. Meyer, K. Wang et al., “Causes of alternative pathway dysregulation in dense deposit disease,” Clinical Journal of the American Society of Nephrology, vol. 7, no. 2, pp. 265–274, 2012.
[23]  A. T. Gewurz, S. M. Imherr, S. Strauss, H. Gewurz, and C. Mold, “C3 nephritic factor and hypocomplementaemia in a clinically healthy individual,” Clinical and Experimental Immunology, vol. 54, no. 1, pp. 253–258, 1983.
[24]  T. H. J. Goodship, I. Y. Pappworth, T. Toth et al., “Factor H autoantibodies in membranoproliferative glomerulonephritis,” Molecular Immunology, vol. 52, no. 3-4, pp. 200–206, 2012.
[25]  C. Licht, U. Schl?tzer-Schrehardt, M. Kirschfink, P. F. Zipfel, and B. Hoppe, “MPGN II—genetically determined by defective complement regulation?” Pediatric Nephrology, vol. 22, no. 1, pp. 2–9, 2007.
[26]  Q. Chen, D. Müller, B. Rudolph et al., “Combined C3b and factor B autoantibodies and MPGN type II,” The New England Journal of Medicine, vol. 365, no. 24, pp. 2340–2342, 2011.
[27]  T. S. Jokiranta, A. Solomon, M. K. Pangburn, P. F. Zipfel, and S. Meri, “Nephritogenic λ light chain dimer: a unique human miniautoantibody against complement factor H,” Journal of Immunology, vol. 163, no. 8, pp. 4590–4596, 1999.
[28]  S. Strobel, M. Zimmering, K. Papp, J. Prechl, and M. Józsi, “Anti-factor B autoantibody in dense deposit disease,” Molecular Immunology, vol. 47, no. 7-8, pp. 1476–1483, 2010.
[29]  L. Anne-Laure, M. Malina, V. Fremeaux-Bacchi et al., “Eculizumab in severe shiga-toxin—associated HUS,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2561–2563, 2011.
[30]  J. Menne, M. Nitschke, R. Stingele et al., “Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study,” British Medical Journal, vol. 345, no. 7869, Article ID e4565, 2012.
[31]  E. Daina, M. Noris, and G. Remuzzi, “Eculizumab in a patient with dense-deposit disease,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1161–1163, 2012.
[32]  S. Radhakrishnan, A. Lunn, M. Kirschfink et al., “Eculizumab and refractory membranoproliferative glomerulonephritis,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1165–1166, 2012.
[33]  M. Vivarelli, A. Pasini, and F. Emma, “Eculizumab for the treatment of dense-deposit disease,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1163–1165, 2012.
[34]  A. S. Bomback, R. J. Smith, G. R. Barile et al., “Eculizumab for dense deposit disease and C3 glomerulonephritis,” Clinical Journal of the American Society of Nephrology, vol. 7, no. 5, pp. 748–756, 2012.
[35]  L. C. Herlitz, A. S. Bomback, G. S. Markowitz et al., “Pathology after eculizumab in dense deposit disease and C3 GN,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1229–1237, 2012.
[36]  S. Habbig, M. J. Mihatsch, S. Heinen et al., “C3 deposition glomerulopathy due to a functional factor H defect,” Kidney International, vol. 75, no. 11, pp. 1230–1234, 2009.
[37]  C. Licht, A. Weyersberg, S. Heinen et al., “Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15,” American Journal of Kidney Diseases, vol. 45, no. 2, pp. 415–421, 2005.
[38]  S. Sethi, F. C. Fervenza, Y. Zhang, and R. J. H. Smith, “Secondary focal and segmental glomerulosclerosis associated with single-nucleotide polymorphisms in the genes encoding complement factor H and C3,” American Journal of Kidney Diseases, vol. 60, no. 2, pp. 316–321, 2012.
[39]  R. C. Wiggins, “The spectrum of podocytopathies: a unifying view of glomerular diseases,” Kidney International, vol. 71, no. 12, pp. 1205–1214, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133