Correlation of Circulating Glucocorticoid-Induced TNFR-Related Protein Ligand Levels with Disease Activity in Patients with Systemic Lupus Erythematosus
The aim of this paper is to investigate the correlation of glucocorticoid-induced tumor necrosis factor receptor- (TNFR-) related protein ligand (GITRL) with disease activity and organ involvement in patients with systemic lupus erythematosus (SLE). Serum GITRL levels were measured in 58 patients with SLE and 30 healthy controls matched for age and sex. Patients were assessed for clinical and laboratory variables. Correlations of serum GITRL levels with SLEDAI, laboratory values, and clinical manifestations were assessed. Serum GITRL levels were determined by ELISA. Serum GITRL levels were markedly increased in patients with SLE compared with healthy controls (mean 401.3?ng/mL and 36.59?ng/mL, resp.; ). SLE patients with active disease showed higher serum GITRL levels compared to those with inactive disease (mean 403.3?ng/mL and 136.3?ng/mL, resp; ) as well as normal controls (36.59?ng/mL; ). Serum GITRL levels were positively correlated with SLEDAI, titers of anti-dsDNA antibody, erythrocyte sedimentation rate (ESR), and IgM and negatively correlated with complement3 (C3). Serum GITRL levels were higher in SLE patients with renal involvement and vasculitis compared with patients without the above-mentioned manifestations. 1. Introduction Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of various autoantibodies that cause damage to multiple organs involving the skin, joints, heart, lungs, kidneys, and central nervous system (CNS) [1]. However, the precise etiology remains unclear. SLE is characterized by hyper-reactivity of B lymphocytes, hyper-gammaglobulinemia, circulating immune complexes, and production of organ-specific and non-organ-specific autoantibodies. Moreover, dysregulated cellular immune responses are at times featured as lymphopenia and monocytosis. Numerous studies have shown that both T-cell activation and proinflammatory cytokine production are critically involved in SLE pathogenesis. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a type I transmembrane protein belonging to the TNFR superfamily, and its cytoplasmic domain shares strong homology with a subgroup of the TNFR superfamily lacking the death domain, including CD27, CD134 (OX40), and CD137 (4-1BB). GITR is expressed predominantly on CD4+CD25+ regulatory T cells at high levels [2–4]. Moreover, other cells with regulatory activity, such as CD4+CD25?, CD8+CD25+, and CD8+CD28? cells, express GITR at high levels [5]. However, its expression has also been detected on many cell types of both
References
[1]
J. A. Croker and R. P. Kimberly, “SLE: challenges and candidates in human disease,” Trends in Immunology, vol. 26, no. 11, pp. 580–586, 2005.
[2]
J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002.
[3]
R. S. McHugh, M. J. Whitters, C. A. Piccirillo et al., “CD4+CD25+ Immunoregulatory T Cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor,” Immunity, vol. 16, no. 2, pp. 311–323, 2002.
[4]
M. Ikeda, F. Takeshima, K. Ohba et al., “Flow cytometric analysis of expression of transforming growth factor-β and glucocorticoid-induced tumor necrosis factor receptor on CD4+ CD25+ T cells of patients with inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 51, no. 1, pp. 178–184, 2006.
[5]
S. Ronchetti, O. Zollo, S. Bruscoli et al., “Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations,” European Journal of Immunology, vol. 34, no. 3, pp. 613–622, 2004.
[6]
E. Bae, W. J. Kim, Y. M. Kang et al., “Glucocorticoid-induced tumour necrosis factor receptor-related protein-mediated macrophage stimulation may induce cellular adhesion and cytokine expression in rheumatoid arthritis,” Clinical and Experimental Immunology, vol. 148, no. 3, pp. 410–418, 2007.
[7]
S. Nakae, H. Suto, G. J. Berry, and S. J. Galli, “Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice,” Blood, vol. 109, no. 9, pp. 3640–3648, 2007.
[8]
K. M. Baltz, M. Krusch, T. Baessler et al., “Neutralization of tumor-derived soluble Glucocorticoid-Induced TNFR-related protein ligand increases NK cell anti-tumor reactivity,” Blood, vol. 112, no. 9, pp. 3735–3743, 2008.
[9]
S. Chen, L. C. Ndhlovu, T. Takahashi et al., “Co-inhibitory roles for glucocorticoid-induced TNF receptor in CD1d-dependent natural killer T cells,” European Journal of Immunology, vol. 38, no. 8, pp. 2229–2240, 2008.
[10]
G. L. Stephens, R. S. McHugh, M. J. Whitters et al., “Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells,” Journal of Immunology, vol. 173, no. 8, pp. 5008–5020, 2004.
[11]
I. D. Cardona, E. Goleva, L. S. Ou, and D. Y. M. Leung, “Staphylococcal enterotoxin B inhibits regulatory T cells by inducing glucocorticoid-induced TNF receptor-related protein ligand on monocytes,” Journal of Allergy and Clinical Immunology, vol. 117, no. 3, pp. 688–695, 2006.
[12]
G. Nocentini, S. Ronchetti, M. G. Petrillo, et al., “Pharmacological modulation of GITRL/GITR system: therapeutic perspectives,” British Journal of Pharmacology, vol. 165, no. 7, pp. 2089–2099, 2012.
[13]
M. Azuma, “Role of the glucocorticoid-induced TNFR-related protein (GITR)-GITR ligand pathway in innate and adaptive immunity,” Critical Reviews in Immunology, vol. 30, no. 6, pp. 547–557, 2010.
[14]
Y. Kamimura, H. Iwai, J. Piao, M. Hashiguchi, and M. Azuma, “The glucocorticoid-induced TNF receptor-related protein (GITR)-GITR ligand pathway acts as a mediator of cutaneous dendritic cell migration and promotes T cell-mediated acquired immunity,” Journal of Immunology, vol. 182, no. 5, pp. 2708–2716, 2009.
[15]
F. Avogadri, J. Yuan, A. Yang, D. Schaer, and J. D. Wolchok, “Modulation of CTLA-4 and GITR for cancer immunotherapy,” Current Topics in Microbiology and Immunology, vol. 344, pp. 211–244, 2011.
[16]
T. Burckhart, M. Thiel, H. Nishikawa et al., “Tumor-specific crosslinking of GITR as costimulation for immunotherapy,” Journal of Immunotherapy, vol. 33, no. 9, pp. 925–934, 2010.
[17]
D. A. Schaer, J. T. Murphy, and J. D. Wolchok, “Modulation of GITR for cancer immunotherapy,” Current Opinion in Immunology, vol. 24, no. 2, pp. 217–224, 2012.
[18]
C. Buechele, T. Baessler, S. Wirths, et al., “Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL),” Leukemia, vol. 26, no. 5, pp. 991–1000, 2012.
[19]
M. Patel, D. Xu, P. Kewin et al., “Glucocorticoid-induced TNFR family-related protein (GITR) activation exacerbates murine asthma and collagen-induced arthritis,” European Journal of Immunology, vol. 35, no. 12, pp. 3581–3590, 2005.
[20]
S. Cuzzocrea, E. Ayroldi, R. Di Paola et al., “Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis,” The FASEB Journal, vol. 19, no. 10, pp. 1253–1265, 2005.
[21]
S. Wang, Y. Shi, M. Yang, et al., “Glucocorticoid-induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells,” The American Journal of Pathology, vol. 180, no. 3, pp. 1059–1067, 2012.
[22]
M. C. Hochberg, “Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 40, no. 9, p. 1725, 1997.
[23]
L. Z. Quan, C. Xie, T. Wu et al., “Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3428–3439, 2005.
[24]
Z. Fehérvari and S. Sakaguchi, “Development and function of CD25+ CD4+ regulatory T cells,” Current Opinion in Immunology, vol. 16, no. 2, pp. 203–208, 2004.
[25]
M. Gavin and A. Rudensky, “Control of immune homeostasis by naturally arising regulatory CD4+ T cells,” Current Opinion in Immunology, vol. 15, no. 6, pp. 690–696, 2003.
[26]
C. Vasu, B. S. Prabhakar, and M. J. Holterman, “Targeted CTLA-4 engagement induces CD4+CD25+CTLA- 4high T regulatory cells with target (allo)antigen specificity,” Journal of Immunology, vol. 173, no. 4, pp. 2866–2876, 2004.
[27]
A. Pedroza-Gonzalez, C. Verhoef, and J. N. Ijzermans, “Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer,” Hepatology. In press.
[28]
J. C. Crispin, A. Martínez, and J. Alcocer-Varela, “Quantification of regulatory T cells in patients with systemic lupus erythematosus,” Journal of Autoimmunity, vol. 21, no. 3, pp. 273–276, 2003.
[29]
G. Nocentini, S. Ronchetti, S. Cuzzocrea, and C. Riccardi, “GITR/GITRL: more than an effector T cell co-stimulatory system,” European Journal of Immunology, vol. 37, no. 5, pp. 1165–1169, 2007.
[30]
J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002.
[31]
L. T. Hiraki, S. M. Benseler, P. N. Tyrrell, D. Hebert, E. Harvey, and E. D. Silverman, “Clinical and laboratory characteristics and long-term outcome of pediatric systemic lupus erythematosus: a longitudinal study,” The Journal of Pediatrics, vol. 152, no. 4, pp. 550–556, 2008.
[32]
A. La Cava, C. J. Fang, R. P. Singh, F. Ebling, and B. H. Hahn, “Manipulation of immune regulation in systemic lupus erythematosus,” Autoimmunity Reviews, vol. 4, no. 8, pp. 515–519, 2005.
[33]
W. Benjamin, D. Sebastian, X. Cai, et al., “CD4+CD25+ T-cell populations expressing CD134 and GITR are associated with disease activity in patients with Wegener's granulomatosis,” Nephrology Dialysis Transplantation, vol. 24, no. 1, pp. 161–171, 2009.