Macroprolactinemia is characterized by a large molecular mass of PRL (macroprolactin) as the main molecular form of PRL in sera, the frequent elevation of serum PRL (hyperprolactinemia), and the lack of symptoms. Macroprolactin is largely a complex of PRL with immunoglobulin G (IgG), especially anti-PRL autoantibodies. The prevalence of macroprolactinemia is 10–25% in patients with hyperprolactinemia and 3.7% in general population. There is no gender difference and a long-term followup demonstrates that macroprolactinemia develops before middle age and is likely a chronic condition. Polyethylene-glycol- (PEG-) precipitation method is widely used for screening macroprolactinemia, and gel filtration chromatography, protein A/G column, and -PRL binding studies are performed to confirm and clarify its nature. The cross-reactivity of macroprolactin varies widely according to the immunoassay systems. The epitope on PRL molecule recognized by the autoantibodies is located close to the binding site for PRL receptors, which may explain that macroprolactin has a lower biological activity. Hyperprolactinemia frequently seen in macroprolactinemic patients is due to the delayed clearance of autoantibody-bound PRL. When rats are immunized with rat pituitary PRL, anti-PRL autoantibodies are produced and hyperprolactinemia develops, mimicking macroprolactinemia in humans. Screening of macroprolactinemia is important for the differential diagnosis of hyperprolactinemia to avoid unnecessary examinations and treatments. 1. Introduction Prolactin (PRL) is an anterior pituitary hormone that plays an important role in lactation during pregnancy but has many other biological functions such as osmoregulation, angiogenesis, and immunoregulation [1]. PRL facilitates the maturation of T cells via IL-2 receptor expression, impairs B cell tolerance to self-antigens through the anti-apoptotic effect, develops antigen-presenting cells, and enhances immunoglobulin production [2]. The increase in serum PRL concentrations (hyperprolactinemia) often develops symptoms such as amenorrhea and galactorrhea in women and impotence in men. It is caused physiologically by pregnancy and pathologically by PRL secreting pituitary adenoma (prolactinoma), hypothalamic and pituitary diseases compressing pituitary stalk, antidopaminergic drugs, hypothyroidism, chest wall diseases, and hepatorenal disorders [3]. However, 29% of hyperprolactinemia has been classified as “idiopathic” because the causes are unknown [4]. Microadenomas in the pituitary gland that cannot be detected by computed tomography
References
[1]
M. E. Freeman, B. Kanyicska, A. Lerant, and G. Nagy, “Prolactin: structure, function, and regulation of secretion,” Physiological Reviews, vol. 80, pp. 1523–1631, 2000.
[2]
S. Shelly, M. Boaz, and H. Orbach, “Prolactin and autoimmunity,” Autoimmunity Reviews, vol. 11, no. 6-7, pp. A465–A470, 2012.
[3]
M. E. Molitch, “Pathologic hyperprolactinemia,” Endocrinology and Metabolism Clinics of North America, vol. 21, no. 4, pp. 877–901, 1992.
[4]
K. Berinder, I. Stacken?s, O. Akre, A. L. Hirschberg, and A. L. Hulting, “Hyperprolactinaemia in 271 women: up to three decades of clinical follow-up,” Clinical Endocrinology, vol. 63, no. 4, pp. 450–455, 2005.
[5]
N. Hattori, T. Ishihara, K. Ikekubo, K. Moridera, M. Hino, and H. Kurahachi, “Autoantibody to human prolactin in patients with idiopathic hyperprolactinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 5, pp. 1226–1229, 1992.
[6]
H. B. Burch, S. Clement, M. S. Sokol, and F. Landry, “Reactive hypoglycemic coma due to insulin autoimmune syndrome: case report and literature review,” The American Journal of Medicine, vol. 92, no. 6, pp. 681–685, 1992.
[7]
T. Sanke, M. Kondo, Y. Moriyama, K. Nanjo, K. Iwo, and K. Miyamura, “Glucagon binding autoantibodies in a patient with hyperthyroidism treated with methimazole,” Journal of Clinical Endocrinology and Metabolism, vol. 57, no. 6, pp. 1140–1144, 1983.
[8]
S. Sakata, S. Nakamura, and K. Miura, “Autoantibodies against thyroid hormones or iodothyronine: implications in diagnosis, thyroid function, treatment, and pathogenesis,” Annals of Internal Medicine, vol. 103, no. 4, pp. 579–589, 1985.
[9]
B. Cavaco, V. Leite, M. M. Loureiro et al., “Spontaneously occurring anti-PTH autoantibodies must be considered in the differential diagnosis of patients with elevated serum PTH levels,” Journal of Endocrinological Investigation, vol. 22, no. 11, pp. 829–834, 1999.
[10]
R. Wheatland, “Chronic ACTH autoantibodies are a significant pathological factor in the disruption of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression,” Medical Hypotheses, vol. 65, no. 2, pp. 287–295, 2005.
[11]
W. R. Meyer, G. Lavy, A. H. DeCherney, I. Visintin, K. Economy, and J. L. Luborsky, “Evidence of gonadal and gonadotropin antibodies in women with a suboptimal ovarian response to exogenous gonadotropin,” Obstetrics and Gynecology, vol. 75, no. 5, pp. 795–799, 1990.
[12]
T. J. Wilkin, L. Voss, A. Tuck, H. Bullen, and P. Betts, “Autoantibodies to endogenous growth hormone in short children (The Wessex Growth Study),” Autoimmunity, vol. 14, no. 1, pp. 67–72, 1992.
[13]
J. H. Lazarus, R. John, and J. Ginsberg, “Transient neonatal hyperthyrotrophinaemia: a serum abnormality due to transplacentally acquired antibody to thyroid stimulating hormone,” British Medical Journal, vol. 286, no. 6365, pp. 592–594, 1983.
[14]
S. O. Fetissov, J. Harro, M. Jaanisk et al., “Autoantibodies against neuropeptides are associated with psychological traits in eating disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14865–14870, 2005.
[15]
N. Hattori, T. Ishihara, Y. Saiki, and A. Shimatsu, “Macroprolactinaemia in patients with hyperprolactinaemia: composition of macroprolactin and stability during long-term follow-up,” Clinical Endocrinology, vol. 73, no. 6, pp. 792–797, 2010.
[16]
N. Hattori, K. Ikekubo, T. Ishihara, K. Moridera, M. Hino, and H. Kurahachi, “A normal ovulatory woman with hyperprolactinemia: presence of anti-prolactin autoantibody and the regulation of prolactin secretion,” Acta Endocrinologica, vol. 126, no. 6, pp. 497–500, 1992.
[17]
N. Hattori, T. Ishihara, and Y. Saiki, “Macroprolactinaemia: prevalence and aetiologies in a large group of hospital workers,” Clinical Endocrinology, vol. 71, no. 5, pp. 702–708, 2009.
[18]
N. Hattori and C. Inagaki, “Anti-prolactin (PRL) autoantibodies cause asymptomatic hyperprolactinemia: bioassay and clearance studies of PRL-immunoglobulin G complex,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 9, pp. 3107–3110, 1997.
[19]
J. G. H. Vieira, T. T. Tachibana, L. H. Obara, and R. M. B. Maciel, “Extensive experience and validation of polyethylene glycol precipitation as a screening method for macroprolactinemia,” Clinical Chemistry, vol. 44, no. 8 I, pp. 1758–1759, 1998.
[20]
M. N. Fahie-Wilson and S. G. Soule, “Macroprolactinaemia: contribution to hyperprolactinaemia in a district general hospital and evaluation of a screening test based on precipitation with polyethylene glycol,” Annals of Clinical Biochemistry, vol. 34, no. 3, pp. 252–258, 1997.
[21]
H. Leslie, C. H. Courtney, P. M. Bell et al., “Laboratory and clinical experience in 55 patients with macroprolactinemia identified by a simple polyethylene glycol precipitation method,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 6, pp. 2743–2746, 2001.
[22]
S. Vallette-Kasic, I. Morange-Ramos, A. Selim et al., “Macroprolactinemia revisited: a study on 106 patients,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 2, pp. 581–588, 2002.
[23]
J. Gibney, T. P. Smith, and T. J. McKenna, “The impact on clinical practice of routine screening for macroprolactin,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 3927–3932, 2005.
[24]
B. Cavaco, V. Leite, M. A. Santos, E. Arranhado, and L. G. Sobrinho, “Some forms of big big prolactin behave as a complex of monomeric prolactin with an immunoglobulin G in patients with macroprolactinemia or prolactinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 8, pp. 2342–2346, 1995.
[25]
J. De Schepper, J. Schiettecatte, B. Velkeniers et al., “Clinical and biological characterization of macroprolactinemia with and without prolactin-IgG complexes,” European Journal of Endocrinology, vol. 149, no. 3, pp. 201–207, 2003.
[26]
L. Kavanagh, T. J. McKenna, M. N. Fahie-Wilson, J. Gibney, and T. P. Smith, “Specificity and clinical utility of methods for the detection of macroprolactin,” Clinical Chemistry, vol. 52, no. 7, pp. 1366–1372, 2006.
[27]
J. Gibney, T. P. Smith, and T. J. McKenna, “Clinical relevance of macroprolactin,” Clinical Endocrinology, vol. 62, no. 6, pp. 633–643, 2005.
[28]
T. P. Smith, A. M. Suliman, M. N. Fahie-Wilson, and T. J. McKenna, “Gross variability in the detection of prolactin in sera containing big big prolactin (macroprolactin) by commercial immunoassays,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5410–5415, 2002.
[29]
N. Hattori, “The frequency of macroprolactinemia in pregnant women and the heterogeneity of its etiologies,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 2, pp. 586–590, 1996.
[30]
H. K. Suh and A. G. Frantz, “Size heterogeneity of human prolactin in plasma and pituitary extracts,” Journal of Clinical Endocrinology and Metabolism, vol. 39, no. 5, pp. 928–935, 1974.
[31]
B. Akerstrom and L. Bjorck, “A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties,” Journal of Biological Chemistry, vol. 261, no. 22, pp. 10240–10247, 1986.
[32]
N. Hattori, Y. Nakayama, K. Kitagawa, T. Ishihara, Y. Saiki, and C. Inagaki, “Anti-prolactin (PRL) autoantibodies suppress PRL bioactivity in patients with macroprolactinaemia,” Clinical Endocrinology, vol. 68, no. 1, pp. 72–76, 2008.
[33]
N. Hattori, K. Ikekubo, T. Ishihara, K. Moridera, M. Hino, and H. Kurahachi, “Correlation of the antibody titers with serum prolactin levels and their clinical course in patients with anti-prolactin autoantibody,” European Journal of Endocrinology, vol. 130, no. 5, pp. 438–445, 1994.
[34]
I. R. Wallace, N. Satti, C. H. Courtney et al., “Ten-year clinical follow-up of a cohort of 51 patients with macroprolactinemia establishes it as a benign variant,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3268–3271, 2010.
[35]
W. B. Malarkey, R. Jackson, and J. Wortsman, “Long-term assessment of patients with macroprolactinemia,” Fertility and Sterility, vol. 50, no. 3, pp. 413–418, 1988.
[36]
V. Leite, H. Cosby, L. G. Sobrinho, A. Fresnoza, M. A. Santos, and H. G. Friesen, “Characterization of big, big prolactin in patients with hyperprolactinaemia,” Clinical Endocrinology, vol. 37, no. 4, pp. 365–372, 1992.
[37]
A. Lea?os-Miranda, D. Pascoe-Lira, K. A. Chávez-Rueda, and F. Blanco-Favela, “Detection of macroprolactinemia with the polyethylene glycol precipitation test in systemic lupus erythematosus patients with hyperprolactinemia,” Lupus, vol. 10, no. 5, pp. 340–345, 2001.
[38]
L. Kavanagh-Wright, T. P. Smith, J. Gibney, and T. J. McKenna, “Characterization of macroprolactin and assessment of markers of autoimmunity in macroprolactinaemic patients,” Clinical Endocrinology, vol. 70, no. 4, pp. 599–605, 2009.
[39]
N. Hattori, Y. Nakayama, K. Kitagawa, T. Ishihara, Y. Saiki, and C. Inagaki, “Anti-prolactin (PRL) autoantibody-binding sites (epitopes) on PRL molecule in macroprolactinemia,” Journal of Endocrinology, vol. 190, no. 2, pp. 287–293, 2006.
[40]
N. Hattori, K. Ikekubo, Y. Nakaya, K. Kitagawa, and C. Inagaki, “Immunoglobulin G subclasses and prolactin (PRL) isoforms in macroprolactinemia due to anti-PRL autoantibodies,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 3036–3044, 2005.
[41]
N. Hattori, Y. Nakayama, K. Kitagawa, T. Li, and C. Inagaki, “Development of anti-PRL (prolactin) autoantibodies by homologous PRL in rats: a model for macroprolactinemia,” Endocrinology, vol. 148, no. 5, pp. 2465–2470, 2007.
[42]
A. Glezer, C. R. J. Soares, J. G. Vieira et al., “Human macroprolactin displays low biological activity via its homologous receptor in a new sensitive bioassay,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 1048–1055, 2006.
[43]
A. Lea?os-Miranda, G. Cárdenas-Mondragón, R. Rivera-Lea?os, A. Ulloa-Aguirre, and V. Goffin, “Application of new homologous in vitro bioassays for human lactogens to assess the actual bioactivity of human prolactin isoforms in hyperprolactinaemic patients,” Clinical Endocrinology, vol. 65, no. 2, pp. 146–153, 2006.
[44]
K. Teilum, J. C. Hoch, V. Goffin, S. Kinet, J. A. Martial, and B. B. Kragelund, “Solution structure of human prolactin,” Journal of Molecular Biology, vol. 351, no. 4, pp. 810–823, 2005.
[45]
P. Marrack, J. Kappler, and B. L. Kotzin, “Autoimmune disease: why and where it occurs,” Nature Medicine, vol. 7, no. 8, pp. 899–905, 2001.
[46]
M. Ohara, T. Hibi, N. Watanabe et al., “Immunoglobulin G subclass distribution of human anticolon antibodies in ulcerative colitis,” Journal of Gastroenterology and Hepatology, vol. 10, no. 2, pp. 158–164, 1995.
[47]
R. Guido, S. Valenti, L. Foppiani, D. De Martini, M. Cossu, and M. Giusti, “Prolactin decrease and shift to a normal-like isoform profile during treatment with quinagolide in a patient affected by an invasive prolactinoma,” Journal of Endocrinological Investigation, vol. 20, no. 5, pp. 289–293, 1997.