全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Clinical Significance of the Dense Fine Speckled Immunofluorescence Pattern on HEp-2 Cells for the Diagnosis of Systemic Autoimmune Diseases

DOI: 10.1155/2012/494356

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antinuclear antibodies (ANAs) are a serological hallmark in the diagnosis of systemic autoimmune rheumatic diseases (SARD). The indirect immunofluorescence (IIF) assay on HEp-2 cells is a commonly used test for the detection of ANA and has been recently recommended as the screening test of choice by a task force of the American College of Rheumatology. However, up to 20% of apparently healthy individuals (HI) have been reported to have a positive IIF ANA test, primarily related to autoantibodies that target the dense fine speckles 70 (DFS70) antigen. Even more important, the DFS IIF pattern has been reported in up to 33% of ANA positive HI, but not in ANA positive SARD sera. Since the intended use of the ANA HEp-2 test is to aid in the diagnosis and classification of SARD, the detection and reporting of anti-DFS70 antibodies and their associated pattern (DFS) as a positive test significantly reduce the specificity and the positive likelihood of the ANA test. This has significant implications for medical management and diagnostic algorithms involving the detection of ANA. Recently, a novel immunoadsorption method has been developed that specifically blocks anti-DFS70 antibodies and, therefore, significantly increases the specificity of the ANA test for SARD. This immunoadsorption method has the potential to overcome a significant limitation of the ANA HEp-2 assay. The present paper summarizes the current knowledge about anti-DFS70 antibodies and their clinical impact on ANA testing. 1. History of ANA Testing The presence of autoantibodies directed against intracellular antigens, especially antinuclear antibodies (ANAs), is a serological hallmark of systemic autoimmune rheumatic diseases (SARD) [1]. In 1958, Friou first described an indirect immunofluorescence (IIF) assay for the detection of antinuclear antibodies (ANA)—which is a historic landmark in the continuing long history of ANA testing in clinical medicine [2]. In most diagnostic laboratories, the ANA test uses HEp-2 tissue culture cells, a cell line which was established in 1952 by Alice E. Moore et al. and derived from tumors that had been produced in irradiated and cortisone treated weanling rats after injection with epidermoid carcinoma tissue obtained from the larynx of a 56-year-old male [3]. The HEp-2 cell—a virtual native protein and nucleic acid array comprised of hundreds if not thousands of potential autoantigens, has been an ideal substrate for the detection of ANA [4]. Over forty years ago and then during the following decades when HEp-2 cells were introduced and used as the IIF

References

[1]  M. Mahler and M. J. Fritzler, “Epitope specificity and significance in systemic autoimmune diseases,” Annals of the New York Academy of Sciences, vol. 1183, pp. 267–287, 2010.
[2]  G. J. Friou, S. C. Finch, and K. D. Detre, “Interaction of nuclei and globulin from lupus erythematosis serum demonstrated with fluorescent antibody,” The Journal of Immunology, vol. 80, no. 4, pp. 324–329, 1958.
[3]  A. E. Moore, L. Sabachewsky, and H. W. Toolan, “Culture characteristics of four permanent lines of human cancer cells,” Cancer Research, vol. 15, no. 9, pp. 598–602, 1955.
[4]  P. L. Meroni and P. H. Schur, “ANA screening: an old test with new recommendations,” Annals of the Rheumatic Diseases, vol. 69, no. 8, pp. 1420–1422, 2010.
[5]  M. J. Fritzler and M. L. Fritzler, “The emergence of multiplexed technologies as diagnostic platforms in systemic autoimmune diseases,” Current Medicinal Chemistry, vol. 13, no. 21, pp. 2503–2512, 2006.
[6]  S. Kivity, B. Gilburd, N. Agmon-Levin, et al., “A novel automated indirect immunofluorescence autoantibody evaluation,” Clinical Rheumatology, vol. 31, no. 3, pp. 503–509, 2012.
[7]  K. Egerer, D. Roggenbuck, R. Hiemann et al., “Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests,” Arthritis Research & Therapy, vol. 12, no. 2, article R40, 2010.
[8]  M. Mahler, J. T. Ngo, J. Schulte-Pelkum, T. Luettich, and M. J. Fritzler, “Limited reliability of the indirect immunofluorescence technique for the detection of anti-Rib-P antibodies,” Arthritis Research & Therapy, vol. 10, no. 6, article R131, 2008.
[9]  M. J. Fritzler, “The antinuclear antibody test: last or lasting gasp?” Arthritis & Rheumatism, vol. 63, no. 1, pp. 19–22, 2011.
[10]  S. S. Copple, A. D. Sawitzke, A. M. Wilson, A. E. Tebo, and H. R. Hill, “Enzyme-linked immunosorbent assay screening then indirect immunofluorescence confirmation of antinuclear antibodies,” American Journal of Clinical Pathology, vol. 135, no. 5, pp. 678–684, 2011.
[11]  K. Op De Beeck, P. Vermeersch, P. Verschueren et al., “Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay,” Autoimmunity Reviews, vol. 10, no. 12, pp. 801–808, 2011.
[12]  H. A. Mariz, E. I. Sato, S. H. Barbosa, S. H. Rodrigues, A. Dellavance, and L. E. C. Andrade, “Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases,” Arthritis & Rheumatism, vol. 63, no. 1, pp. 191–200, 2011.
[13]  A. Watanabe, M. Kodera, K. Sugiura et al., “Anti-DFS70 antibodies in 597 healthy hospital workers,” Arthritis & Rheumatism, vol. 50, no. 3, pp. 892–900, 2004.
[14]  R. L. Ochs, Y. Muro, Y. Si, H. Ge, E. K. L. Chan, and E. M. Tan, “Autoantibodies to DFS 70?kd/transcription coactivator p75 in atopic dermatitis and other conditions,” The Journal of Allergy and Clinical Immunology, vol. 105, no. 6, pp. 1211–1220, 2000.
[15]  V. Ganapathy and C. A. Casiano, “Autoimmunity to the nuclear autoantigen DFS70 (LEDGF): what exactly are the autoantibodies trying to tell us?” Arthritis & Rheumatism, vol. 50, no. 3, pp. 684–688, 2004.
[16]  T. Daniels, J. Zhang, I. Gutierrez et al., “Antinuclear autoantibodies in prostate cancer: immunity to LEDGF/p75, a survival protein highly expressed in prostate tumors and cleaved during apoptosis,” Prostate, vol. 62, no. 1, pp. 14–26, 2005.
[17]  M. Mahler, T. Parker, C. L. Peebles, et al., “Anti-DFS70/LEDGF antibodies are more prevalent in healthy individuals compared to patients with systemic autoimmune rheumatic diseases,” The Journal of Rheumatology, vol. 39, no. 11, pp. 2104–2110, 2012.
[18]  A. Dellavance, V. S. T. Viana, E. P. Leon, E. S. D. O. Bonfa, L. E. C. Andrade, and P. G. Leser, “The clinical spectrum of antinuclear antibodies associated with the nuclear dense fine speckled immunofluorescence pattern,” The Journal of Rheumatology, vol. 32, no. 11, pp. 2144–2149, 2005.
[19]  Y. Muro, K. Sugiura, Y. Morita, and Y. Tomita, “High concomitance of disease marker autoantibodies in anti-DFS70/LEDGF autoantibody-positive patients with autoimmune rheumatic disease,” Lupus, vol. 17, no. 3, pp. 171–176, 2008.
[20]  Y. Muro, Y. Ogawa, K. Sugiura, and Y. Tomita, “HLA-associated production of anti-DFS70/LEDGF autoantibodies and systemic autoimmune disease,” Journal of Autoimmunity, vol. 26, no. 4, pp. 252–257, 2006.
[21]  R. L. Ochs, T. W. Stein Jr., C. L. Peebles, R. F. Gittes, and E. M. Tan, “Autoantibodies in interstitial cystitis,” Journal of Urology, vol. 151, no. 3, pp. 587–592, 1994.
[22]  N. Bizzaro, E. Tonutti, and D. Villalta , “Recognizing the dense fine speckled/lens epithelium-derived growth factor/p75 pattern on HEp-2 cells: not an easy task! Comment on the article by Mariz et al,” Arthritis & Rheumatism, vol. 63, no. 12, pp. 4036–4037.
[23]  T. Shinohara, D. P. Singh, and L. T. Chylack Jr., “Review: age-related cataract: immunity and lens epithelium-derived growth factor (LEDGF),” Journal of Ocular Pharmacology and Therapeutics, vol. 16, no. 2, pp. 181–191, 2000.
[24]  G. Maertens, P. Cherepanov, W. Pluymers et al., “LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells,” The Journal of Biological Chemistry, vol. 278, no. 35, pp. 33528–33539, 2003.
[25]  M. Mahler, J. G. Hanly, and M. J. Fritzler, “Importance of the dense fine speckled pattern on HEp-2 cells and anti-DFS70 antibodies for the diagnosis of systemic autoimmune diseases,” Autoimmunity Reviews, vol. 11, no. 9, pp. 642–645, 2012.
[26]  N. Bizzaro, E. Tonutti, D. Visentini et al., “Antibodies to the lens and cornea in anti-DFS70-positive subjects,” Annals of the New York Academy of Sciences, vol. 1107, pp. 174–183, 2007.
[27]  E. M. Tan, A. S. Cohen, and J. F. Fries, “The 1982 revised criteria for the classification of systemic lupus erythrematosus,” Arthritis & Rheumatism, vol. 25, no. 11, pp. 1271–1277, 1982.
[28]  S. Narain, H. B. Richards, M. Satoh et al., “Diagnostic accuracy for lupus and other systemic autoimmune diseases in the community setting,” Archives of Internal Medicine, vol. 164, no. 22, pp. 2435–2441, 2004.
[29]  M. R. Arbuckle, M. T. McClain, M. V. Rubertone et al., “Development of autoantibodies before the clinical onset of systemic lupus erythematosus,” The New England Journal of Medicine, vol. 349, no. 16, pp. 1526–1533, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133