Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles. 1. Introduction Rheumatoid arthritis (RA) is a polygenic systemic autoimmune disease that mainly affects the synovial joints, causing chronic inflammation and profound tissue destruction in affected patients. The pathological features of RA include leukocyte infiltration of the synovial tissue (mainly T cells and macrophages), autoantibody production (e.g., against immunoglobulins, citrullinated peptides, or tissue-restricted antigens), the accumulation of inflammatory cells (mainly neutrophils) in the joint fluid, the proliferation of synovial fibroblasts, and the formation of pannus; collectively, these features result in the destruction of articular cartilage and bone erosion. The identification of genetic alterations and variations in RA (involving either the major histocompatibility complex (MHC) or non-MHC genes) and an understanding of their functional consequences may impact the diagnosis, therapy, and prevention of RA [1], an autoimmune disease that affects approximately 1% of the human population. No other autoimmune disease appears in so many different clinical forms or is characterised by such heterogeneous and diverse clinical symptoms and laboratory tests. As a consequence, there are many experimental animal models attempting to mimic the multiple clinical symptoms of RA. Animal studies may help to fill the gaps in human genome-wide association studies
References
[1]
J. Kurko, T. Besenyei, J. Laki, et al., “Genetics of rheumatoid arthritis,” Clinical Reviews in Allergy & Immunology. In press.
[2]
W. B. V. D. Berg, “Lessons from animal models of arthritis over the past decade,” Arthritis Research and Therapy, vol. 11, no. 5, article 250, 2009.
[3]
E. Ahlqvist, M. Hultqvist, and R. Holmdahl, “The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis,” Arthritis Research and Therapy, vol. 11, no. 3, article 226, 2009.
[4]
L. Bevaart, M. J. Vervoordeldonk, and P. P. Tak, “Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis?” Arthritis and Rheumatism, vol. 62, no. 8, pp. 2192–2205, 2010.
[5]
C. Cai and A. La Cava, “Mimicking self-antigens with synthetic peptides in systemic autoimmune rheumatic diseases,” Current Clinical Pharmacology, vol. 4, no. 2, pp. 142–147, 2009.
[6]
T. T. Glant, K. Mikecz, A. Arzoumanian, and A. R. Poole, “Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology,” Arthritis and Rheumatism, vol. 30, no. 2, pp. 201–212, 1987.
[7]
K. Mikecz, T. T. Glant, and A. R. Poole, “Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan,” Arthritis and Rheumatism, vol. 30, no. 3, pp. 306–318, 1987.
[8]
D. E. Trentham, A. S. Townes, and A. H. Kang, “Autoimmunity to type II collagen: an experimental model of arthritis,” Journal of Experimental Medicine, vol. 146, no. 3, pp. 857–868, 1977.
[9]
J. S. Courtenay, M. J. Dallman, and A. D. Dayan, “Immunisation against heterologous type II collagen induces arthritis in mice,” Nature, vol. 283, no. 5748, pp. 666–668, 1980.
[10]
T. T. Glant, A. Finnegan, and K. Mikecz, “Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics,” Critical Reviews in Immunology, vol. 23, no. 3, pp. 199–250, 2003.
[11]
M. Popovic, E. Ahlqvist, E. Rockenbauer, R. Bockermann, and R. Holmdahl, “Identification of new loci controlling collagen-induced arthritis in mouse using a partial advanced intercross and congenic strains,” Scandinavian Journal of Immunology, vol. 68, no. 4, pp. 405–413, 2008.
[12]
E. Zanelli, F. C. Breedveld, and R. R. P. De Vries, “HLA class II association with rheumatoid arthritis: facts and interpretations,” Human Immunology, vol. 61, no. 12, pp. 1254–1261, 2000.
[13]
C. M. Weyand and J. J. Goronzy, “Association of MHC and rheumatoid arthritis HLA polymorphisms in phenotypic variants of rheumatoid arthritis,” Arthritis Research, vol. 2, no. 3, pp. 212–216, 2000.
[14]
R. M. Plenge, “Rheumatoid arthritis genetics: 2009 update,” Current Rheumatology Reports, vol. 11, no. 5, pp. 351–356, 2009.
[15]
M. Bax, J. Van Heemst, T. W. J. Huizinga, and R. E. M. Toes, “Genetics of rheumatoid arthritis: what have we learned?” Immunogenetics, vol. 63, no. 8, pp. 459–466, 2011.
[16]
C. Perricone, F. Ceccarelli, and G. Valesini, “An overview on the genetic of rheumatoid arthritis: a never-ending story,” Autoimmunity Reviews, vol. 10, no. 10, pp. 599–608, 2011.
[17]
N. Craddock, M. E. Hurles, N. Cardin, et al., “Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls,” Nature, vol. 464, no. 7289, pp. 713–720, 2010.
[18]
F. Cong, S. Spencer, J. F. C?té et al., “Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation,” Molecular Cell, vol. 6, no. 6, pp. 1413–1423, 2000.
[19]
E. A. Stahl, S. Raychaudhuri, E. F. Remmers, et al., “Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci,” Nature Genetics, vol. 42, no. 6, pp. 508–514, 2010.
[20]
R. de Vries, “Genetics of rheumatoid arthritis: time for a change!,” Current Opinion in Rheumatology, vol. 23, no. 3, pp. 227–232, 2011.
[21]
M. R. Velaga, V. Wilson, C. E. Jennings et al., “The codon 620 tryptophan allele of the Lymphoid Tyrosine Phosphatase (LYP) gene is a major determinant of Graves' disease,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5862–5865, 2004.
[22]
D. Smyth, J. D. Cooper, J. E. Collins et al., “Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus,” Diabetes, vol. 53, no. 11, pp. 3020–3023, 2004.
[23]
L. A. Criswell, K. A. Pfeiffer, R. F. Lum et al., “Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes,” American Journal of Human Genetics, vol. 76, no. 4, pp. 561–571, 2005.
[24]
A. Hinks, A. Barton, S. John et al., “Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene,” Arthritis and Rheumatism, vol. 52, no. 6, pp. 1694–1699, 2005.
[25]
M. K. Viken, S. S. Amundsen, T. K. Kvien et al., “Association analysis of the 1858C > T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases,” Genes and Immunity, vol. 6, no. 3, pp. 271–273, 2005.
[26]
P. L. De Jager, S. Sawcer, A. Waliszewska et al., “Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn's disease and multiple sclerosis,” European Journal of Human Genetics, vol. 14, no. 3, pp. 317–321, 2006.
[27]
C. Vandiedonck, C. Capdevielle, M. Giraud et al., “Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis,” Annals of Neurology, vol. 59, no. 2, pp. 404–407, 2006.
[28]
M. Centola, Z. Szekanecz, E. Kiss et al., “Gene expression profiles of systemic lupus erythematosus and rheumatoid arthritis,” Expert Review of Clinical Immunology, vol. 3, no. 5, pp. 797–806, 2007.
[29]
M. J. H. Coenen and P. K. Gregersen, “Rheumatoid arthritis: a view of the current genetic landscape,” Genes and Immunity, vol. 10, no. 2, pp. 101–111, 2009.
[30]
D. D. Brand, A. H. Kang, and E. F. Rosloniec, “Immunopathogenesis of collagen arthritis,” Springer Seminars in Immunopathology, vol. 25, no. 1, pp. 3–18, 2003.
[31]
A. Hanyecz, S. E. Berlo, S. Szántó, C. P. M. Broeren, K. Mikecz, and T. T. Glant, “Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype,” Arthritis and Rheumatism, vol. 50, no. 5, pp. 1665–1676, 2004.
[32]
V. Kouskoff, A. S. Korganow, V. Duchatelle, C. Degott, C. Benoist, and D. Mathis, “Organ-specific disease provoked by systemic autoimmunity,” Cell, vol. 87, no. 5, pp. 811–822, 1996.
[33]
A. S. Korganow, J. Hong, S. Mangialaio et al., “From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins,” Immunity, vol. 10, no. 4, pp. 451–461, 1999.
[34]
S. Mangialaio, H. Ji, A. S. Korganow, et al., “The arthritogenic T cell receptor and its ligand in a model of spontaneous arthritis,” Arthritis and Rheumatism, vol. 42, no. 12, pp. 2517–2523, 1999.
[35]
I. Matsumoto, M. Maccioni, D. M. Lee et al., “How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease,” Nature Immunology, vol. 3, no. 4, pp. 360–365, 2002.
[36]
D. Kassahn, C. Kolb, S. Solomon et al., “Few human autoimmune sera detect GPI (multiple letters) [2],” Nature Immunology, vol. 3, no. 5, pp. 411–413, 2002.
[37]
D. Kassahn, C. Kolb, S. Solomon et al., “Few human autoimmune sera detect GPI (multiple letters),” Nature Immunology, vol. 3, no. 5, pp. 411–413, 2002.
[38]
I. Matsumoto, D. M. Lee, R. Goldbach-Mansky et al., “Low prevalence of antibodies to glucose-6-phosphate isomerase in patients with rheumatoid arthritis and a spectrum of other chronic autoimmune disorders,” Arthritis and Rheumatism, vol. 48, no. 4, pp. 944–954, 2003.
[39]
A. K. Johnsen, W. Valdar, L. Golden, et al., “A genome-wide and species-wide dissection of the genetics of arthritis severity in hetrogeneous stock mice,” Arthritis and Rheumatism, vol. 63, no. 9, pp. 2630–2640, 2011.
[40]
N. Sakaguchi, T. Takahashi, H. Hata et al., “Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice,” Nature, vol. 426, no. 6965, pp. 454–460, 2003.
[41]
R. Horai, S. Saijo, H. Tanioka et al., “Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin I receptor antagonist-deficient mice,” Journal of Experimental Medicine, vol. 191, no. 2, pp. 313–320, 2000.
[42]
S. Nakae, S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura, “IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5986–5990, 2003.
[43]
J. Keffer, L. Probert, H. Cazlaris et al., “Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis,” EMBO Journal, vol. 10, no. 13, pp. 4025–4031, 1991.
[44]
S. Solomon, N. Rajasekaran, E. Jeisy-Walder, S. B. Snapper, and H. Illges, “A crucial role for macrophages in the pathology of K/B × N serum-induced arthritis,” European Journal of Immunology, vol. 35, no. 10, pp. 3064–3073, 2005.
[45]
J. M. Stuart and F. J. Dixon, “Serum transfer of collagen-induced arthritis in mice,” Journal of Experimental Medicine, vol. 158, no. 2, pp. 378–392, 1983.
[46]
M. E. Englert, K. M. Ferguson, and C. R. Suarez, “Passive transfer of collagen arthritis: heterogeneity of anti-collagen IgG,” Cellular Immunology, vol. 101, no. 2, pp. 373–379, 1986.
[47]
R. Holmdahl, L. Klareskog, and K. Rubin, “T lymphocytes in collagen II-induced arthritis in mice. Characterization of arthritogenic collagen II-specific T-cell lines and clones,” Scandinavian Journal of Immunology, vol. 22, no. 3, pp. 295–306, 1985.
[48]
O. Tarjanyi, F. Boldizsar, P. Nemeth, K. Mikecz, and T. T. Glant, “Age-related changes in arthritis susceptibility and severity in a murine model of rheumatoid arthritis,” Immunity and Ageing, vol. 6, article 8, 2009.
[49]
T. T. Glant, M. Radacs, G. Nagyeri et al., “Proteoglycan-induced arthritis and recombinant human proteoglycan aggrecan G1 domain-induced arthritis in BALB/c mice resembling two subtypes of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 63, no. 5, pp. 1312–1321, 2011.
[50]
Y. Zhang, A. Guerassimov, J. Y. Leroux et al., “Induction of arthritis in BALB/c mice by cartilage link protein: involvement of distinct regions recognized by T and B lymphocytes,” American Journal of Pathology, vol. 153, no. 4, pp. 1283–1291, 1998.
[51]
G. F. M. Verheijden, A. W. M. Rijnders, E. Bos et al., “Human cartilage glycoprotein-39 as a candidate autoantigen in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 40, no. 6, pp. 1115–1125, 1997.
[52]
T. Bárdos, J. Zhang, K. Mikecz, C. S. David, and T. T. Glant, “Mice lacking endogenous major histocompatibility complex class II develop arthritis resembling psoriatic arthritis at an advanced age,” Arthritis and Rheumatism, vol. 46, no. 9, pp. 2465–2475, 2002.
[53]
S. E. Berlo, P. J. Van Kooten, C. B. Ten Brink et al., “Naive transgenic T cells expressing cartilage proteoglycan-specific TCR induce arthritis upon in vivo activation,” Journal of Autoimmunity, vol. 25, no. 3, pp. 172–180, 2005.
[54]
S. E. Berlo, T. Guichelaar, C. B. Ten Brink et al., “Increased arthritis susceptibility in cartilage proteoglycan-specific T cell receptor-transgenic mice,” Arthritis and Rheumatism, vol. 54, no. 8, pp. 2423–2433, 2006.
[55]
F. Boldizsar, K. Kis-Toth, O. Tarjanyi et al., “Impaired activation-induced cell death promotes spontaneous arthritis in antigen (cartilage proteoglycan)-specific T cell receptor-transgenic mice,” Arthritis and Rheumatism, vol. 62, no. 10, pp. 2984–2994, 2010.
[56]
J. R. Jensen, L. C. Peters, A. Borrego et al., “Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse,” Genes and Immunity, vol. 7, no. 1, pp. 44–50, 2006.
[57]
X. Yu, K. Bauer, D. Koczan, H. J. Thiesen, and S. M. Ibrahim, “Combining global genome and transcriptome approaches to identify the candidate genes of small-effect quantitative trait loci in collagen-induced arthritis,” Arthritis Research and Therapy, vol. 9, article R3, 2007.
[58]
X. Yu, H. Teng, A. Marques, F. Ashgari, and S. M. Ibrahim, “High resolution mapping of Cia3: a common arthritis quantitative trait loci in different species,” Journal of Immunology, vol. 182, no. 5, pp. 3016–3023, 2009.
[59]
A. R. Poole, “Cartilage in health and disease,” in Arthritis and Allied Conditions. A Textbook of Rheumatology, D. J. McCarty and W. J. Koopman, Eds., pp. 279–333, Lea & Febiger, Philadelphia, Pa, USA, 1993.
[60]
M. Czipri, J. M. Otto, G. Cs-Szabó et al., “Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency,” Journal of Biological Chemistry, vol. 278, no. 40, pp. 39214–39223, 2003.
[61]
I. I. Singer, D. W. Kawka, E. K. Bayne et al., “VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2178–2186, 1995.
[62]
N. Bizzaro, “Antibodies to citrullinated peptides: a significant step forward in the early diagnosis of rheumatoid arthritis,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 2, pp. 150–157, 2007.
[63]
M. Simon, E. Girbal, M. Sebbag et al., “The cytokeratin filament-aggregating protein filaggrin is the target of the so-called 'antikeratin antibodies,' autoantibodies specific for rheumatoid arthritis,” Journal of Clinical Investigation, vol. 92, no. 3, pp. 1387–1393, 1993.
[64]
E. Girbal-Neuhauser, J. J. Durieux, M. Arnaud et al., “The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues,” Journal of Immunology, vol. 162, no. 1, pp. 585–594, 1999.
[65]
A. R. Poole, T. T. Glant, and K. Mikecz, “Autoimmunity to cartilage collagen and proteoglycan and the development of chronic inflammatory arthritis,” in The Control of Tissue Damage, A. M. Glaurer, Ed., pp. 55–65, Elsevier Publishers (Biomedical Division), Amsterdam, The Netherlands, 1988.
[66]
T. T. Glant, K. Mikecz, E. J. M. A. Thonar, and K. E. Kuettner, “Immune responses to cartilage proteoglycans in inflammatory animal models and human diseases,” in Cartilage Degradation: Basic and Clinical Aspects, J. F. Woessner and D. S. Howell, Eds., pp. 435–473, Marcel Dekker, New York, NY, USA, 1992.
[67]
T. T. Glant, C. Fulop, K. Mikecz, E. Buzas, G. Molnar, and P. Erhardt, “Proteoglycan-specific autoreactive antibodies and T-lymphocytes in experimental arthritis and human rheumatoid joint diseases,” Biochemical Society Transactions, vol. 18, no. 5, pp. 796–799, 1990.
[68]
J. H. Herman, D. W. Wiltse, and M. V. Dennis, “Immunopathologic significance of cartilage antigenic components in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 16, no. 3, pp. 287–297, 1973.
[69]
T. Glant, J. Csongor, and T. Szucs, “Immunopathologic role of proteoglycan antigens in rheumatoid joint disease,” Scandinavian Journal of Immunology, vol. 11, no. 3, pp. 247–252, 1980.
[70]
E. E. Golds, I. B. M. Stephen, and J. M. Esdaile, “Lymphocyte transformation to connective tissue antigens in adult and juvenile rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic lupus erythematosus, and a nonarthritic control population,” Cellular Immunology, vol. 82, no. 1, pp. 196–209, 1983.
[71]
C. Karopoulos, M. J. Rowley, M. Z. Ilic, and C. J. Handley, “Presence of antibodies to native G1 domain of aggrecan core protein in synovial fluids from patients with various joint diseases,” Arthritis and Rheumatism, vol. 39, no. 12, pp. 1990–1997, 1996.
[72]
A. M. H. Boots, G. F. M. Verheijden, R. Sch?ningh et al., “Selection of self-reactive peptides within human aggrecan by use of a HLA-DRB1*0401 peptide binding motif,” Journal of Autoimmunity, vol. 10, no. 6, pp. 569–578, 1997.
[73]
A. Guerassimov, Y. Zhang, S. Banerjee et al., “Autoimmunity to cartilage link protein in patients with rheumatoid arthritis and ankylosing spondylitis,” Journal of Rheumatology, vol. 25, no. 8, pp. 1480–1484, 1998.
[74]
A. Guerassimov, Y. P. Zhang, S. Banerjee, et al., “Cellular immunity to the G1 domain of cartilage proteoglycan aggrecan is enhanced in patients with rheumatoid arthritis but only after removal of keratan sulfate,” Arthritis and Rheumatism, vol. 41, no. 6, pp. 1019–1025, 1998.
[75]
N. L. Li, D. Q. Zhang, K. Y. Zhou et al., “Isolation and characteristics of autoreactive T cells specific to aggrecan G1 domain from rheumatoid arthritis patients,” Cell Research, vol. 10, no. 1, pp. 39–49, 2000.
[76]
J. Zou, Y. Zhang, A. Thiel et al., “Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis,” Rheumatology, vol. 42, no. 7, pp. 846–855, 2003.
[77]
H. De Jong, S. E. Berlo, P. Hombrink et al., “Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 255–262, 2010.
[78]
A. Von Delwig, J. Locke, J. H. Robinson, and W. F. Ng, “Response of Th17 cells to a citrullinated arthritogenic aggrecan peptide in patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 143–149, 2010.
[79]
S. C. Law, S. Street, C. H. Yu, et al., “T cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles,” Arthritis Research and Therapy, vol. 14, no. 3, p. R118, 2012.
[80]
E. I. Buzás, A. Hanyecz, Y. Murad et al., “Differential recognition of altered peptide ligands distinguishes two functionally discordant (arthritogenic and nonarthritogenic) autoreactive T cell hybridoma clones,” Journal of Immunology, vol. 171, no. 6, pp. 3025–3033, 2003.
[81]
E. I. Buzás, A. Végvári, Y. M. Murad, A. Finnegan, K. Mikecz, and T. T. Glant, “T-cell recognition of differentially tolerated epitopes of cartilage proteoglycan aggrecan in arthritis,” Cellular Immunology, vol. 235, no. 2, pp. 98–108, 2005.
[82]
T. T. Glant, V. A. Adarichev, A. B. Nesterovitch et al., “Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis,” American Journal of the Medical Sciences, vol. 327, no. 4, pp. 188–195, 2004.
[83]
J. M. Otto, G. Cs-Szabó, J. Gallagher, et al., “Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 42, no. 12, pp. 2524–2531, 1999.
[84]
T. T. Glant, V. A. Adarichev, F. Boldizsar, et al., “Disease-promoting and -protective genomic loci on mouse chromosomes 3 and 19 control the incidence and severity of autoimmune arthritis,” Gene Immunity, vol. 13, no. 4, pp. 336–345, 2012.
[85]
V. A. Adarichev, T. Bárdos, S. Christodoulou, M. T. Phillips, K. Mikecz, and T. T. Glant, “Major histocompatibility complex controls susceptibility and dominant inheritance, but not the severity of the disease in mouse models of rheumatoid arthritis,” Immunogenetics, vol. 54, no. 3, pp. 184–192, 2002.
[86]
V. A. Adarichev, J. C. Valdez, T. Bárdos, A. Finnegan, K. Mikecz, and T. T. Glant, “Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci,” Journal of Immunology, vol. 170, no. 5, pp. 2283–2292, 2003.
[87]
V. A. Adarichev, A. Vegvari, Z. Szabo, K. Kis-Toth, K. Mikecz, and T. T. Glant, “Congenic strains displaying similar clinical phenotype of arthritis represent different immunologic models of inflammation,” Genes and Immunity, vol. 9, no. 7, pp. 591–601, 2008.
[88]
R. M. Plenge, M. Seielstad, L. Padyukov et al., “TRAF1-C5 as a risk locus for rheumatoid arthritis - A genomewide study,” The New England Journal of Medicine, vol. 357, no. 12, pp. 1199–1209, 2007.
[89]
C. J. Etzel, W. V. Chen, N. Shepard et al., “Genome-wide meta-analysis for rheumatoid arthritis,” Human Genetics, vol. 119, no. 6, pp. 634–641, 2006.
[90]
A. Barton, W. Thomson, X. Ke et al., “Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility,” Human Molecular Genetics, vol. 17, no. 15, pp. 2274–2279, 2008.
[91]
H. Eleftherohorinou, V. Wright, C. Hoggart et al., “Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases.,” PloS One, vol. 4, no. 11, article e8068, 2009.
[92]
T. T. Glant, S. Szántó, A. Vegvari et al., “Two loci on chromosome 15 control experimentally induced arthritis through the differential regulation of IL-6 and lymphocyte proliferation,” Journal of Immunology, vol. 181, no. 2, pp. 1307–1314, 2008.
[93]
E. Ahlqvist, R. Bockermann, and R. Holmdahl, “Fragmentation of two quantitative trait loci controlling collagen-induced arthritis reveals a new set of interacting subloci,” Journal of Immunology, vol. 178, no. 5, pp. 3084–3090, 2007.
[94]
M. Liljander, M. A. S?llstr?m, S. Anderson, et al., “Identification of collagen-induced arthritis loci in aged multiparous female mice,” Arthritis Research and Therapy, vol. 8, no. 2, article R45, 2006.
[95]
K. Bauer, X. Yu, P. Wernhoff, D. Koczan, H. J. Thiesen, and S. M. Ibrahim, “Identification of new quantitative trait loci in mice with collagen-induced arthritis,” Arthritis and Rheumatism, vol. 50, no. 11, pp. 3721–3728, 2004.
[96]
X. Yu, K. Bauer, P. Wernhoff et al., “Fine mapping of collagen-induced arthritis quantitative trait loci in an advanced intercross line,” Journal of Immunology, vol. 177, no. 10, pp. 7042–7049, 2006.
[97]
M. Johannesson, L. M. Olsson, A. K. B. Lindqvist et al., “Gene expression profiling of arthritis using a QTL chip reveals a complex gene regulation of the Cia5 region in mice,” Genes and Immunity, vol. 6, no. 7, pp. 575–583, 2005.
[98]
T. Lindvall, J. Karlsson, R. Holmdahl, et al., “Dissection of a locus on mouse chromosome 5 reveals arthritis promoting and inhibitory genes,” Arthritis Research and Therapy, vol. 11, no. 1, article R10, 2009.
[99]
S. M. Ibrahim, D. Koczan, and H. J. Thiesen, “Gene-expression profile of collagen-induced arthritis,” Journal of Autoimmunity, vol. 18, no. 2, pp. 159–167, 2002.
[100]
P. S. Gulko, Y. Kawahito, E. F. Remmers, et al., “Identification of a new non-major histocompatibility complex genetic locus on chromosome 2 that controls disease severity in collagen-induced arthritis in rats,” Arthritis and Rheumatism, vol. 41, no. 12, pp. 2122–2131, 1998.
[101]
Y. Kawahito, E. F. Remmers, R. L. Wilder et al., “A genetic linkage map of rat chromosome 20 derived from five F2 crosses,” Immunogenetics, vol. 48, no. 5, pp. 335–338, 1998.
[102]
J. S. Shepard, E. F. Remmers, S. Chen et al., “A genetic linkage map of rat Chromosome 15 derived from five F2 crosses,” Mammalian Genome, vol. 10, no. 2, pp. 186–188, 1999.
[103]
B. Joe, E. F. Remmers, D. E. Dobbins et al., “Genetic dissection of collagen-induced arthritis in chromosome 10 quantitative trait locus speed congenic rats: evidence for more than one regulatory locus and sex influences,” Immunogenetics, vol. 51, no. 11, pp. 930–944, 2000.
[104]
L. Wester, P. Olofsson, S. M. Ibrahim, and R. Holmdahl, “Chronicity of pristane-induced arthritis in rats is controlled by genes on chromosome 14,” Journal of Autoimmunity, vol. 21, no. 4, pp. 305–313, 2003.
[105]
L. Wester, D. Koczan, J. Holmberg et al., “Differential gene expression in pristane-induced arthritis susceptible DA versus resistant E3 rats,” Arthritis Research & Therapy, vol. 5, no. 6, pp. R361–R372, 2003.
[106]
V. A. Adarichev, A. B. Nesterovitch, T. Bárdos et al., “Sex effect on clinical and immunologic quantitative trait loci in a murine model of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 6, pp. 1708–1720, 2003.
[107]
J. M. Otto, R. Chandrasekeran, C. Vermes et al., “A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis,” Journal of Immunology, vol. 165, no. 9, pp. 5278–5286, 2000.
[108]
M. Johannesson, J. Karlsson, P. Wernhoff et al., “Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice,” Genes and Immunity, vol. 6, no. 3, pp. 175–185, 2005.
[109]
G. Firneisz, I. Zehavi, C. Vermes, A. Hanyecz, J. A. Frieman, and T. T. Glant, “Identification and quantification of disease-related gene clusters,” Bioinformatics, vol. 19, no. 14, pp. 1781–1786, 2003.
[110]
H. T. Yang, J. Jirholt, L. Svensson et al., “Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat,” Journal of Immunology, vol. 163, no. 5, pp. 2916–2921, 1999.
[111]
N. Van Houten and S. F. Blake, “Direct measurement of anergy of antigen-specific T cells following oral tolerance induction,” Journal of Immunology, vol. 157, no. 4, pp. 1337–1341, 1996.
[112]
D. R. Studelska, L. Mandik-Nayak, X. Zhou et al., “High affinity glycosaminoglycan and autoantigen interaction explains joint specificity in a mouse model of rheumatoid arthritis,” Journal of Biological Chemistry, vol. 284, no. 4, pp. 2354–2362, 2009.
[113]
L. B. Hughes, R. J. Reynolds, E. E. Brown et al., “Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans,” Arthritis and Rheumatism, vol. 62, no. 12, pp. 3547–3553, 2010.
[114]
J. Cui, S. Saevarsdottir, B. Thomson et al., “Rheumatoid arthritis risk allele PTPRC is also associated with response to anti-tumor necrosis factor α therapy,” Arthritis and Rheumatism, vol. 62, no. 7, pp. 1849–1861, 2010.
[115]
S. D. Thompson, M. Sudman, P. S. Ramos et al., “The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1,” Arthritis and Rheumatism, vol. 62, no. 11, pp. 3265–3276, 2010.
[116]
A. W. Morgan, J. I. Robinson, P. G. Conaghan et al., “Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort,” Arthritis Research and Therapy, vol. 12, no. 2, article R57, 2010.
[117]
J. Freudenberg, H. S. Lee, B. G. Han et al., “Genome-Wide Association Study of Rheumatoid Arthritis in Koreans: population-specific loci as well as overlap with European Susceptibility Loci,” Arthritis and Rheumatism, vol. 63, no. 4, pp. 884–893, 2011.
[118]
R. M. Plenge, C. Cotsapas, L. Davies et al., “Two independent alleles at 6q23 associated with risk of rheumatoid arthritis,” Nature Genetics, vol. 39, no. 12, pp. 1477–1482, 2007.
[119]
M. Feldmann, F. M. Brennan, and R. N. Maini, “Role of cytokines in rheumatoid arthritis,” Annual Review of Immunology, vol. 14, pp. 397–440, 1996.
[120]
L. Menard, D. Saadoun, I. Isnardi, et al., “The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans,” The Journal of Clinical Investigation, vol. 121, no. 9, pp. 3635–3644, 2011.
[121]
J. Jirholt, A. Cook, T. Emahazion, et al., “Genetic linkage analysis of collagen-induced arthritis in the mouse,” European Journal of Immunology, vol. 28, no. 10, pp. 3321–3328, 1998.
[122]
M. Sundvall, J. Jirholt, H. T. Yang et al., “Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis,” Nature Genetics, vol. 10, no. 3, pp. 313–317, 1995.
[123]
J. Karlsson, M. Johannesson, T. Lindvall, et al., “Genetic interactions in Eae2 control collagen-induced arthritis and the CD4+/CD8+ T cell ratio,” Journal of Immunology, vol. 174, no. 1, pp. 533–541, 2005.
[124]
H. C. Meng, M. M. Griffiths, E. F. Remmers et al., “Identification of two novel female-specific non-major histocompatibility complex loci regulating collagen-induced arthritis severity and chronicity, and evidence of epistasis,” Arthritis and Rheumatism, vol. 50, no. 8, pp. 2695–2705, 2004.
[125]
M. Brenner, H. C. Meng, N. C. Yarlett et al., “The non-major histocompatibility complex quantitative trait locus Cia10 contains a major arthritis gene and regulates disease severity, pannus formation, and joint damage,” Arthritis and Rheumatism, vol. 52, no. 1, pp. 322–332, 2005.
[126]
W. Xu, H. Lan, P. Hu, et al., “Evidence of linkage to chromosome 1 for early age of onset of rheumatoid arthritis and HLA marker DRB1 genotype in NARAC data,” BMC Proceedings, vol. 1, supplement 1, p. S78, 2007.
[127]
C. Liu, F. Batliwalla, W. Li et al., “Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis,” Molecular Medicine, vol. 14, no. 9-10, pp. 575–581, 2008.
[128]
M. Gharaee-Kermani, E. M. Denholm, and S. H. Phan, “Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors,” Journal of Biological Chemistry, vol. 271, no. 30, pp. 17779–17784, 1996.
[129]
A. H. M. van der Helm-van Mil and T. W. J. Huizinga, “Advances in the genetics of rheumatoid arthritis point to subclassification into distinct disease subsets,” Arthritis Research and Therapy, vol. 10, no. 2, article 205, 2008.
[130]
J. Bowes and A. Barton, “Recent advances in the genetics of RA susceptibility,” Rheumatology, vol. 47, no. 4, pp. 399–402, 2008.
[131]
S. J. Choi, Y. H. Rho, J. D. Ji, G. G. Song, and Y. H. Lee, “Genome scan meta-analysis of rheumatoid arthritis,” Rheumatology, vol. 45, no. 2, pp. 166–170, 2006.
[132]
A. W. Morgan, J. H. Barrett, B. Griffiths et al., “Analysis of Fcgamma receptor haplotypes in rheumatoid arthritis: FCGR3A remains a major susceptibility gene at this locus, with an additional contribution from FCGR3B,” Arthritis Research & Therapy, vol. 8, no. 1, p. R5, 2006.
[133]
Y. Kochi, R. Yamada, A. Suzuki et al., “A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities,” Nature Genetics, vol. 37, no. 5, pp. 478–485, 2005.
[134]
D. D. Licatalosi, A. Mele, J. J. Fak et al., “HITS-CLIP yields genome-wide insights into brain alternative RNA processing,” Nature, vol. 456, no. 7221, pp. 464–469, 2008.
[135]
S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell, “Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps,” Nature, vol. 460, no. 7254, pp. 479–486, 2009.
[136]
G. Malterer, L. D?lken, and J. Haas, “The miRNA-targetome of KSHV and EBV in human B-cells,” RNA Biology, vol. 8, no. 1, pp. 30–34, 2011.
[137]
J. Wen, B. J. Parker, A. Jacobsen, and A. Krogh, “MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action,” RNA, vol. 17, no. 5, pp. 820–834, 2011.
[138]
C. Zhang and R. B. Darnell, “Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data,” Nature Biotechnology, vol. 29, no. 7, pp. 607–614, 2011.